

The Architecture Analysis &
Design Language (AADL):
An Introduction

Peter H. Feiler
David P. Gluch
John J. Hudak

February 2006

Performance-Critical Systems

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2006-TN-011

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2006-TN-011 i

Contents

Abstract...xi

1 Introduction..1
1.1 Document Summary ...1
1.2 Reader’s Guide to Technical Interests ..2
1.3 Conventions Used in this Document...3

2 SAE AADL Overview..4
2.1 Abstraction of Components ..4
2.2 Architectural Analysis..5

3 AADL Language Abstractions ..7
3.1 Components ...8
3.2 Component Types...8
3.3 Component Implementations..9
3.4 Packages, Property Sets, and Annexes ...10

4 AADL System Models and Specifications ... 11
4.1 AADL Textual Specifications ...12
4.2 Graphical Representations ...13
4.3 Example Specification ..14
4.4 Type Declarations...16
4.5 Implementation Declarations ..18
4.6 Package Declarations...19
4.7 Property Set Declarations...20
4.8 Annex Library Declarations...20
4.9 Namespaces...21
4.10 Partial Specifications ..21
4.11 Extends, Refines, and Partial Specification ..21

5 Software Components...23
5.1 Process...23

5.1.1 Textual Representation...23

ii CMU/SEI-2006-TN-011

5.1.2 Graphical Repesenation ... 24
5.1.3 Properties ... 25
5.1.4 Constraints.. 25

5.2 Thread .. 26
5.2.1 Textual Representation... 26
5.2.2 Graphical Representation ... 27
5.2.3 Thread Execution.. 28
5.2.4 Properties ... 29
5.2.5 Constraints.. 30

5.3 Thread Group ... 31
5.3.1 Textual Representation... 31
5.3.2 Graphical Representation ... 32
5.3.3 Properties ... 33
5.3.4 Constraints.. 33

5.4 Data.. 34
5.4.1 Textual Representation... 34
5.4.2 Graphical Representation ... 36
5.4.3 Properties ... 36
5.4.4 Constraints.. 37

5.5 Subprogram.. 37
5.5.1 Textual Representation... 38
5.5.2 Graphical Representation ... 38
5.5.3 Properties ... 40
5.5.4 Constraints.. 41

6 Execution Platform Components ... 42
6.1 Processor ... 42

6.1.1 Textual and Graphical Representations 43
6.1.2 Properties ... 44
6.1.3 Constraints.. 44

6.2 Memory .. 44
6.2.1 Textual and Graphical Representations 45
6.2.2 Properties ... 46
6.2.3 Constraints.. 46

6.3 Bus ... 46
6.3.1 Textual and Graphical Representations 47
6.3.2 Properties ... 47
6.3.3 Constraints.. 48

6.4 Device .. 48
6.4.1 Textual and Graphical Representations 48
6.4.2 Properties ... 50
6.4.3 Constraints.. 51

CMU/SEI-2006-TN-011 iii

7 System Structure and Instantiation ...52
7.1 System Abstraction...52

7.1.1 Textual and Graphical Representations....................................52
7.1.2 Constraints..54

7.2 System Instance ...54
7.3 Binding to Execution Platform Components ...55

8 Component Interactions ...56
8.1 Ports ...56

8.1.1 Port Declarations ..57
8.1.2 Port Connections ..58
8.1.3 Connections in System Instance Models60
8.1.4 Port Communication Timing..61
8.1.5 Immediate and Delayed Communications62
8.1.6 Oversampling and Under-Sampling..64
8.1.7 Properties..66
8.1.8 Port and Port Connection Constraints67

8.2 Port Groups ..67
8.2.1 Port Groups and Port Group Type Declarations68
8.2.2 Port Group Connections ...69
8.2.3 Aggregate Data Ports ...71
8.2.4 Properties..71

8.3 Subcomponent Access ...71
8.3.1 Data Access Declarations...72
8.3.2 Data Access Connections...72
8.3.3 Bus Access and Bus Access Connections74

8.4 Subprogram Calls ...77
8.4.1 Call Sequences...78
8.4.2 Remote Calls ..79
8.4.3 Properties..80

8.5 Data Exchange and Sharing in Subprograms81
8.5.1 Data Exchange by Value: Parameters and Connections..........81
8.5.2 Data Passing by Reference and Global Data82
8.5.3 Method Calls in AADL...84

9 Modes ...86
9.1 Modal Specifications...86

9.1.1 Modal Configurations of Subcomponents and Connections86
9.1.2 Modal Configurations of Call Sequences..................................89
9.1.3 Mode-Specific Properties..90

10 Flows...91

iv CMU/SEI-2006-TN-011

10.1 Flow Declarations... 91
10.2 Flow Paths.. 92

10.2.1 Flow Path through a Component .. 92
10.2.2 End-to-End Flow within a Component 93

11 Properties... 95
11.1 Property Declarations... 95
11.2 Assigning Property Values.. 96

11.2.1 Basic Property Associations ... 96
11.2.2 Contained Property Associations.. 97
11.2.3 Inherited Property Associations.. 100
11.2.4 Mode or Binding Specific Property Associations 101
11.2.5 Property Values .. 102

11.3 Defining New Properties... 103
11.4 Property Type Declarations .. 104
11.5 Property Name Declarations .. 105
11.6 Property Constant Declarations.. 106

12 Organizing a Specification ... 108
12.1 Packages.. 108
12.2 Design Patterns...111

12.2.1 Type Extensions ... 111
12.2.2 Refinements within Implementations 112
12.2.3 Implementation Extensions... 113
12.2.4 Example Design Patterns ... 115

Appendix.. 117

Index... 126

References... 129

CMU/SEI-2006-TN-011 v

List of Figures

Figure 3-1: Summary of AADL Elements.. 7

Figure 3-2: Subclauses of a Type Declaration ... 8

Figure 3-3: Subclauses of an Implementation Declaration....................................... 9

Figure 4-1: AADL Representations... 11

Figure 4-2: AADL Graphical Notation ... 13

Figure 5-1: Graphical Representation of a Sample Process 25

Figure 5-2: Thread Execution State Machine ... 29

Figure 5-3: A Sample Thread Group Graphical Representation............................. 32

Figure 5-4: Sample Data Component Graphical Representations 36

Figure 5-5: Subprogram Graphical Representation ... 39

Figure 6-1: A Device as Part of the Physical Hardware ... 50

Figure 6-2: A Device as Part of the Application System ... 50

Figure 6-3: A Device as Part of the Controlled Environment.................................. 50

Figure 8-1: Port Graphical Representations.. 57

Figure 8-2: A Semantic Connection between Thread Instances 61

Figure 8-3: A Connection Instance in a Partially Specified
System Instance Model.. 61

Figure 8-4: An Immediate Connection.. 62

Figure 8-5: A Delayed Connection... 64

Figure 8-6: Oversampling with Delayed Connections .. 65

vi CMU/SEI-2006-TN-011

Figure 8-7: Oversampling with Immediate Connections .. 65

Figure 8-8: Under-Sampling with Delayed Connections .. 66

Figure 8-9: Under-Sampling with Immediate Connections..................................... 66

Figure 8-10: Graphical Representations of Port Groups.. 69

Figure 8-11: Sample Port Group Connections ... 70

Figure 11-1: Contained Property: Allowed_Processor_Binding 100

Figure 12-1: 3-Way Voting Lane Component ..115

Figure 12-2: Generic N-Way Voting Lanes Type-Implementation Pairs115

Figure 12-3: Specialized Extension and Refinement ..116

CMU/SEI-2006-TN-011 vii

List of Tables

Table 1-1: Summary of Content in this Document .. 1

Table 1-2: Technical Interests and Relevant Sections in this Document................. 2

Table 4-1: Principal AADL Declarations .. 12

Table 4-2: A Simplified Example of an AADL Specification 15

Table 4-3: Sample Component Type Declarations ... 16

Table 4-4: Component Implementation Declarations.. 19

Table 4-5: Example Packages .. 20

Table 4-6: A Simple Extends and Refines Example.. 22

Table 5-1: Textual Representation of a Sample Process 24

Table 5-2: Summary of Permitted Process Declarations 26

Table 5-3: A Sample Thread Declaration .. 27

Table 5-4: A Sample Thread Implementation with One Subcomponent 28

Table 5-5: Sample Thread Properties ... 30

Table 5-6: Summary of Permitted Thread Subclause Declarations 30

Table 5-7: A Sample Thread Group AADL Textual Specification........................... 31

Table 5-8: Elements of a Thread Group Component .. 33

Table 5-9: Sample Data Component Declarations.. 35

Table 5-10: Legal Elements of Data Type and Implementation Declarations 37

Table 5-11: Subprogram Textual Representation.. 38

viii CMU/SEI-2006-TN-011

Table 5-12: Example Textual and Graphical Subroutine Declarations.................... 39

Table 5-13: Restrictions on Subprogram Declarations ... 41

Table 6-1: A Sample Processor Textual and Graphical Representation 43

Table 6-2: Summary of Permitted Processor Declarations................................... 44

Table 6-3: A Sample Memory Textual and Graphical Representation 45

Table 6-4: Summary of Permitted Memory Declaration Subclauses 46

Table 6-5: A Sample Bus Specification:
Textual and Graphical Representation... 47

Table 6-6: Summary of Permitted Bus Declaration Subclauses 48

Table 6-7: A Sample Device Specification:
Textual and Graphical Representation... 49

Table 6-8: Summary of Permitted Device Declaration Subclauses 51

Table 7-1: A Sample System Specification:
Textual and Graphical Representation... 53

Table 7-2: Summary of Permitted System Declarations 54

Table 8-1: Sample Declarations of Data, Event, and Event Data Ports................ 58

Table 8-2: AADL Specification of an Immediate Connection 63

Table 8-3: AADL Specification of a Delayed Connection...................................... 64

Table 8-4: Sample Port Group with Mixed Port Types.. 68

Table 8-5: A Port Group Type Declaration and its Inverse.................................... 69

Table 8-6: Sample Port Group Connection Declarations...................................... 70

Table 8-7: Data Access Declarations.. 72

Table 8-8: Shared Access across a System Hierarchy... 73

Table 8-9: Basic Bus Access and Access Connection Declarations..................... 75

CMU/SEI-2006-TN-011 ix

Table 8-10: Example Bus Access Connection Declarations 76

Table 8-11: Example Subprogram Calls ... 78

Table 8-12: Client-Server Subprogram Example .. 79

Table 8-13: Example Parameter Connections .. 82

Table 8-14: Examples of Passing by Reference and Global Data 83

Table 8-15: Methods Calls on an Object... 84

Table 9-1: Sample Graphical and Textual Specifications for Modes 87

Table 9-2: Modes Example ... 88

Table 9-3: Mode-Dependent Call Sequences ... 89

Table 9-4: Mode-Specific Component Property Associations 90

Table 10-1: Flow Declarations within a Component Type Declaration.................... 91

Table 10-2: Flow Implementation Declarations through a Component 93

Table 10-3: An End-to-End Flow... 94

Table 11-1: Basic Property Association Declarations ... 96

Table 11-2: Sample Access Property Associations... 97

Table 11-3: Contained Property Associations .. 98

Table 11-4: In Binding and In Mode Property Associations 101

Table 11-5: Classifier Property Types ... 102

Table 11-6: Property Associations with Value ... 103

Table 11-7: Sample Property Set Declarations... 104

Table 11-8: Sample Property Type Declarations .. 105

Table 11-9: Sample Property Name Declarations.. 106

Table 11-10: Sample Property Constant Declarations.. 107

x CMU/SEI-2006-TN-011

Table 12-1: Example Package Declaration... 109

Table 12-2: Example Design Organization Using Packages110

Table 12-3: Example Type Extension ..112

Table 12-4: Example Refines Type Implementation Subclauses...........................113

Table 12-5: Example Implementation Extensions..114

Table 13-1: Allowed Component-Subcomponent Relationships............................117

Table 13-2: Allowed Features for Components ...118

Table 13-3: Features and Allowed Components..119

Table 13-4: Constraints/Restrictions for Components .. 120

Table 13-5: AADL Built-in Property Types .. 122

Table 13-6: AADL Reserved Words.. 123

Table 13-7: Type Extensions and Associated Refinements.................................. 124

Table 13-8: Implementations Extensions and Associated Refinements 125

CMU/SEI-2006-TN-011 xi

Abstract

In November 2004, the Society of Automotive Engineers (SAE) released the aerospace
standard AS5506, named the Architecture Analysis & Design Language (AADL). The AADL
is a modeling language that supports early and repeated analyses of a system’s architecture
with respect to performance-critical properties through an extendable notation, a tool
framework, and precisely defined semantics.

The language employs formal modeling concepts for the description and analysis of
application system architectures in terms of distinct components and their interactions. It
includes abstractions of software, computational hardware, and system components for (a)
specifying and analyzing real-time embedded and high dependability systems, complex
systems of systems, and specialized performance capability systems and (b) mapping of
software onto computational hardware elements.

The AADL is especially effective for model-based analysis and specification of complex real-
time embedded systems. This technical note is an introduction to the concepts, language
structure, and application of the AADL.

xii CMU/SEI-2006-TN-011

Section 1: Introduction

CMU/SEI-2006-TN-011 1

1 Introduction

This document, Part 1 of a use guide for the Architecture Analysis & Design Language
(AADL), provides an introduction to the language and AADL specifications.1 The AADL is
defined in the Society of Automotive Engineers (SAE) standard AS5506.2

1.1 Document Summary
Readers who are unfamiliar with the AADL will be able to gain a fuller understanding of the
purpose, capabilities, notation, and elements of this modeling language. Table 1-1
summarizes the content in this document.

Table 1-1: Summary of Content in this Document

Section
Number Content Summary

2
Section 2 summarizes the AADL language and introduces the AADL as a
framework for the design and analysis of the architectures of component-based
systems.

3
Section 3 provides a foundation for more detailed and problem-oriented
material in other sections of the document. This section also presents a
conceptual overview of the AADL abstractions; subsequent sections supply
details on the syntax and semantics of various language constructs.

4

Section 4 focuses on an AADL textual (natural language) specification as a
human-readable set of representations that consists of a collection of textual
declarations that comply with the AADL standard [SAE 06a]. The graphical
representations associated with the textual declarations are also included
throughout this document to highlight the relationship between the
representations.

5
Section 5 presents the software component abstractions (process, thread,
thread group data, and subprogram) and provides example declarations for
these components.

6
Section 6 provides the execution platform component abstractions (processor,
memory, bus, and device) and provides example declarations for these
components.

7 Section 7 discusses the system abstraction and presents examples of the
specification of composite systems and their instances.

1 The use guide for the AADL will be published initially as a series of technical notes.
2 For more information on the development, ongoing applications, and future plans of the AADL, go

to http://www.aadl.info. To purchase a copy of the standard, go to http://www.sae.org/servlets
/productDetail?PROD_TYP=STD&PROD_CD=AS5506.

Section 1: Introduction

2 CMU/SEI-2006-TN-011

Table 1: Summary of Content in this Document (cont.)

Section
Number Content Summary

8
Section 8 describes the abstractions that support the specification of
component interactions. Examples of the specification of component interfaces
and their interconnections are presented.

9 Section 9 presents the specification of alternative operational states of a
system. Modes mode transitions, and examples of their specification are
described.

10 Section 10 describes the use of the AADL flows concept and presents
examples of the specification of abstract flows throughout a system.

11 Section 11 discusses property constructs and presents examples of property
type and name definitions, property set declarations, and property associations.

12 Section 12 describes the constructs for organizing an AADL specification. It
includes examples of AADL architectural pattern sets.

The Appendix (pages 117–125) provides tabular summaries of the features, components, and
built-in properties of the language.

1.2 Reader’s Guide to Technical Interests
Readers familiar with the AADL standard document will be able to take advantage of the
detailed descriptions and examples (in textual and graphical forms) shown in the technical
interest areas that are correlated with sections in this document in Table 1-2.

Table 1-2: Technical Interests and Relevant Sections in this Document

Section Numbers Technical Considerations

5.4, 5.5, 8.3.1, 8.3.2, 8.4,
and 8.5

Modeling Application Software—These sections address data
and subprogram components and their interactions (e.g., calls
and component access.

5.1, 5.2, 5.3, 8.1, 8.2,
8.3.1, 8.3.2, and 8.4.2

Execution Tasking and Concurrency—These sections present
relevant aspects of runtime interaction, coordination, and timing
associated with multiple execution paths.

6, 7, and 8.3.3 System Instances and Binding Software to Hardware
Components—These sections discuss issues and capabilities in
defining a complete instance of a system architecture.

11 Properties of Model Elements—This section discusses assigning
values to properties and defining new properties within an AADL
model.

Section 1: Introduction

CMU/SEI-2006-TN-011 3

Table 1-2: Technical Interests and Relevant Sections in this Document (cont.)

Section Numbers Technical Considerations

9 and 11.2 Partitioning Runtime Configurations—These sections present the
structuring of alternative architectural configurations for a system.

10, 11.3, 11.4, and 11.5 Analysis Abstractions—These sections discuss capabilities that
facilitate analysis of a system architecture.

1.3 Conventions Used in this Document
The textual and graphical illustrations used in this technical note reflect the styles used in the
AADL standard document [SAE 06a], except where noted. In addition, for consistency and
clarification in this document, we have represented AADL core language concepts and key
specification elements the same way (i.e., using the same type style and format) in textual
examples and explanatory text (in sections 4 through 12). Also, we have used the AADL icon
() to indicate a different semantics than that represented by a similar graphical symbol in
the Unified Modeling Language (UML).

Section 2: SAE AADL Overview

4 CMU/SEI-2006-TN-011

2 SAE AADL Overview

The SAE AADL standard provides formal modeling concepts for the description and analysis
of application systems architecture in terms of distinct components and their interactions. The
AADL includes software, hardware, and system component abstractions to

• specify and analyze real-time embedded systems, complex systems of systems, and
specialized performance capability systems

• map software onto computational hardware elements

The AADL is especially effective for model-based analysis and specification of complex real-
time embedded systems.

2.1 Abstraction of Components
Within the AADL, a component is characterized by its identity (a unique name and runtime
essence), possible interfaces with other components, distinguishing properties (critical
characteristics of a component within its architectural context), and subcomponents and their
interactions.

In addition to interfaces and internal structural elements, other abstractions can be defined for
a component and system architecture. For example, abstract flows of information or control
can be identified, associated with specific components and interconnections, and analyzed.
These additional elements can be included through core AADL language capabilities (e.g.
defining new component properties) or the specification of a supplemental annex language.3

The component abstractions of the AADL are separated into three categories:

1. application software

a. thread: active component that can execute concurrently and be organized into
thread groups

b. thread group: component abstraction for logically organizing thread, data, and
thread group components within a process

c. process: protected address space whose boundaries are enforced at runtime

d. data: data types and static data in source text

e. subprogram: concepts such as call-return and calls-on methods (modeled using a
subprogram component that represents a callable piece of source code)

3 Annex libraries enable a designer to extend the language and customize an AADL specification to

meet project- or domain-specific requirements. An annex document is an approved extension to the
core AADL standard. [SAE 06a].

Section 2: SAE AADL Overview

CMU/SEI-2006-TN-011 5

2. execution platform (hardware)

a. processor: schedules and executes threads

b. memory: stores code and data

c. device: represents sensors, actuators, or other components that interface with the
external environment

d. bus: interconnects processors, memory, and devices

3. composite

a. system: design elements that enable the integration of other components into
distinct units within the architecture

System components are composites that can consist of other systems as well as of software or
hardware components.

The AADL standard includes runtime semantics for mechanisms of exchange and control of
data, including

• message passing

• event passing

• synchronized access to shared components

• thread scheduling protocols

• timing requirements

• remote procedure calls

In addition, dynamic reconfiguration of runtime architectures can be specified using
operational modes and mode transitions.

2.2 Architectural Analysis
The AADL can be used to model and analyze systems already in use and design and integrate
new systems. The AADL can be used in the analysis of partially defined architectural patterns
(with limited architectural detail) as well as in full-scale analysis of a complete system model
extracted from the source code (with completely quantified system property values).

AADL supports the early prediction and analysis of critical system qualities—such as
performance, schedulability, and reliability. For example, in specifying and analyzing
schedulability, AADL-supported thread components include the predeclared4 execution
property options of periodic, aperiodic (event-driven), background (dispatched once and
executed to completion), and sporadic (paced by an upper rate bound) events. These thread
characteristics are defined as part of the thread declaration and can be readily analyzed.

4 There is a standard predeclared property set named AADL_Properties that is part of every

AADL specification [SAE 06a].

Section 2: SAE AADL Overview

6 CMU/SEI-2006-TN-011

Within the core language, property sets can be declared that include new properties for
components and other modeling elements (e.g. ports and connections). By utilizing the
extension capabilities of the language, too, additional models and properties can be included.
For example, a reliability annex can be used that defines reliability models and properties of
components facilitating a Markov or fault tree analysis of the architecture [SAE 06b]. This
analysis would assess an architecture’s compliance with specific reliability requirements.

Collectively, these AADL properties and extensions can be used to incorporate new and
focused analyses at the architectural design level. These analyses facilitate tradeoff
assessments among alternative design options early in a development or upgrade process.

AADL components interact exclusively through defined interfaces. A component interface
consists of directional flow through

• data ports for unqueued state data

• event data ports for queued message data

• event ports for asynchronous events

• synchronous subprogram calls

• explicit access to data components

Interactions among components are specified explicitly. For example, data communication
among components is specified through connection declarations. These can be midframe
(immediate) communication or phase-delayed (delayed) communication. The semantics of
these connections assures deterministic transfer of data streams. Deterministic transfer means
that a thread always receives data with the same time delay; if the receiving thread is over- or
under-sampling the data stream, it always does so at a constant rate.

Application components have properties that specify timing requirements such as period,
worst-case execution time, deadlines, space requirements, arrival rates, and characteristics of
data and event streams. In addition, properties identify the following:

• source code and data that implement the application component being modeled in the
AADL

• constraints for binding threads to processors, source code, and data onto memory

The constraints can limit binding to specific processor or memory types (e.g., to a processor
with DSP support) as well as prevent colocation of application components to support fault
tolerance [Feiler 04].

Section 3: AADL Language Abstractions

CMU/SEI-2006-TN-011 7

3 AADL Language Abstractions

The core language concepts and key specification elements of AADL are summarized in
Figure 3-1. In AADL, components are defined through type and implementation
declarations. A Component Type declaration defines a component’s interface elements and
externally observable attributes (i.e., features that are interaction points with other
components, flow specifications, and internal property values). A Component
Implementation declaration defines a component’s internal structure in terms of
subcomponents, subcomponent connections, subprogram call sequences, modes,
flow implementations, and properties. Components are grouped into application
software, execution platform, and composite categories. Packages enable the organization of
AADL elements into named groups. Property Sets and Annex Libraries enable a designer to
extend the language and customize an AADL specification to meet project- or domain-
specific requirements.5

Component implementation
identifier
• extends {component implementation}
• refines type
• subcomponents
• connections
• call sequences
• modes
• flows
• properties

Component implementation
identifier
• extends {component implementation}
• refines type
• subcomponents
• connections
• call sequences
• modes
• flows
• properties

Component type
• component category
• extends
• features (is)
• subcomponents (requires)

Component type
• component category
• extends
• features (is)
• subcomponents (requires)

• port
• access
• parameter

• ports
• access
• subprogram
• parameter

Component Type
identifier

• extends {component_type}
• features
• flows
• properties

Component Type
identifier

• extends {component_type}
• features
• flows
• properties

Package
public
- declarations
private
- declarations

Package
public
- declarations
private
- declarations

• modes
• mode transitions

Property Set
property types
property definitions
constants

Property Set
property types
property definitions
constants

Annex
LibraryAnnex

Library

more details references implements

Components
• data
• subprogram
• thread
• thread group
• process

• memory
• device
• processor
• bus

• system

Legend

Figure 3-1: Summary of AADL Elements

5 Annex libraries enable a designer to extend the language and customize an AADL specification to

meet project- or domain-specific requirements. An annex document is an approved extension to the
core AADL standard.

Section 3: AADL Language Abstractions

8 CMU/SEI-2006-TN-011

3.1 Components
Components form the central modeling vocabulary for the AADL. Components are assigned
a unique identity (name) and are declared as a type and implementation within a
particular component category. A component category defines the runtime essence of a
component. There are three distinct sets of component categories:

1. application software

a. thread: a schedulable unit of concurrent execution

b. thread group: a compositional unit for organizing threads

c. process: a protected address space

d. data: data types and static data in source text

e. subprogram: callable sequentially executable code

2. execution platform

a. processor: components that execute threads

b. memory: components that store data and code

c. device: components that interface with and represent the external environment

d. bus: components that provide access among execution platform components

3. composite

a. system: a composite of software, execution platform, or system components

Each of the component categories is discussed in separate sections of this document. The
syntax and semantics of declarations in an AADL specification are discussed in Section 4.1.

3.2 Component Types
An AADL component type declaration establishes a component’s externally visible
characteristics. For example, a declaration specifies the interfaces of a thread component.
A component type declaration consists of a defining clause and descriptive subclauses; Figure
3-2 shows a type declaration of a thread. Features are the interfaces of the component.
Flows specify distinct abstract channels of information transfer. Properties define
intrinsic characteristics of a component. There are predefined properties for each
component category (e.g., the execution time for a thread).

Figure 3-2: Subclauses of a Type Declaration

thread <name>
extends
features
flows
properties

Section 3: AADL Language Abstractions

CMU/SEI-2006-TN-011 9

The extends subclause enables one component type declaration to build upon another. A
component declared as an extension inherits the characteristics of the original component
(i.e., it is a subclass of the original). Within a component declared as an extension of another
type, interfaces, flows, and properties can be added; partially declared elements of the
antecedent component type can be detailed; and properties can be modified (refined). These
qualities permit the modeling of variations in the interfaces of a family of related
components.

3.3 Component Implementations
A component implementation specifies an internal structure in terms of
subcomponents, interactions (calls and connections) among the features of
those subcomponents, flows across a sequence of subcomponents, modes that
represent operational states, and properties.

The subclauses of an implementation declaration are summarized in Figure 3-3. The
subcomponents, connections, and calls declarations specify the composition of a
component as a collection of components (subcomponents) and their interactions. Flows
represent implementations of flow specifications in the component type or end-to-end flows
to be analyzed (i.e., flows that start in one subcomponent, go through zero or more
subcomponents, and end in another subcomponent). Modes represent alternative operational
modes that may manifest themselves as alternate configurations of subcomponents,
calls sequences, connections, flow sequences, and properties. Properties
define intrinsic characteristics of a component. There are predefined properties for each
component implementation.

Figure 3-3: Subclauses of an Implementation Declaration

Multiple implementations of a component type can be declared, allowing multiple variants
with the same external interfaces to be modeled because each implementation provides
a realization of a component that satisfies the same interface specified by the component
type. In addition, a component implementation may extend and refine other previously
declared component implementations. Extended implementations (declared with the
extends subclause) inherit the characteristics of the original component
implementation and all of its predecessors. Refinement allows partially specified

 thread implementation <typeidentifier>.<implementationidentifier>
extends
refines type
subcomponents
calls
connections
flows
modes
properties

Section 3: AADL Language Abstractions

10 CMU/SEI-2006-TN-011

component implementations (templates) to be completed, while extension allows a
component implementation to be expressed as variation of a common component
description through additions. In addition, an extends implementation declaration can
add property values to the features of its corresponding type. These additions can be
made through the refines type subclause.

Component decomposition is defined through subcomponents declarations within
component implementation declarations. A subcomponent represents the decomposition
element and the classifier (named implementation) represents a choice in a family.
A component instance is created by instantiating a component implementation and each
of its subcomponents recursively.

3.4 Packages, Property Sets, and Annexes

AADL packages permit collections of component declarations to be organized into separate
units with their own namespaces. Elements with common characteristics (e.g., all
components associated with network communications) can be grouped together in a
package and referenced using the package name. Packages can support the independent
development of AADL models for different subsystems of a large-scale system by
providing a distinct namespace for each group of subsystem elements.

A property set is a named grouping of property declarations that define new
properties and property types that can be included in a specification. For example, a
security property set can include definitions for security levels required in a database
system. These properties are referenced using the property set name and can be
associated with components and other modeling elements (e.g., ports or connections) within a
system specification. Their declaration and use become part of the specification.

An annex enables a user to extend the AADL language, allowing the incorporation of
specialized notations within a standard AADL model. For example, a formal language that
enables an analysis of a critical aspect of a system (e.g., reliability analysis, security, or
behavior) can be included within an AADL specification.6

Each of these elements is described in more detail in other sections of this document.

6 Annex libraries enable a designer to extend the language and customize an AADL specification to

meet project- or domain-specific requirements. An annex document is an approved extension to the
core AADL standard.

Section 4: AADL System Models and Specifications

CMU/SEI-2006-TN-011 11

4 AADL System Models and Specifications

An AADL system model describes the architecture and runtime environment of an
application system in terms of its constituent software and execution platform (hardware)
components and their interactions. An AADL model is captured in a specification consisting
of syntactically and semantically correct AADL declarations. A complete AADL system
model includes all of the declarations required to instantiate a runtime instance of an
application system that the specification represents (e.g., an aircraft’s flight control system).

From a user perspective, an AADL specification and its constituent declarations can be
expressed textually, graphically, in a combination of those representations, or as Extensible
Markup Language (XML). The AADL textual and graphical notations are defined by the
SAE AADL standard and its extensions [SAE 06a]. The XML form is defined in Extensible
Markup Language (XML) 1.0 (Third Edition) [W3C 04]. Figure 4-1 summarizes the
alternative representations of an AADL specification, showing sample textual, graphical, and
XML representations.

Figure 4-1: AADL Representations

 XML
<threadType name="data_processing">
<features>
 <dataPort name="raw_speed_in"/>
 <dataPort name="speed_out"
direction="out"/>
 </features>

thread data_processing
features
raw_speed_in: in data port;
speed_out: out data port;
Properties
Period => 20 ms;
end data_processing;

 AADL Graphical

data_processing

AADL Textual
20 ms

Section 4: AADL System Models and Specifications

12 CMU/SEI-2006-TN-011

4.1 AADL Textual Specifications
This section focuses on an AADL textual (natural language) specification as a human-
readable collection of textual declarations that comply with the AADL standard [SAE 06a].
Graphical notations associated with the textual specifications are included in this document to
highlight the relationship between representations and to help the reader visualize the
architecture. Detailed descriptions of the graphical representations for AADL constructs and
declarations are provided in the graphical standard.7 The principal AADL declarations are
summarized in Table 4-1.

Table 4-1: Principal AADL Declarations

Declaration Description

Component Type:
system, process, thread, thread
group data, subprogram,
processor, device, memory, and
bus

The component type declaration establishes the
identity (component category and name) and
defines the features, flows, and properties of a
component type. A component type declaration may
also declare the type as an extension of another
type (extends).

Component Implementation:
system, process, thread, thread
group data, subprogram,
processor, device, memory, and
bus

The component implementation declaration
establishes the identity (component category, type,
and name) and defines the refinements (refines
type subclause), subcomponents, calls,
connections, flows, modes, and properties of a
component implementation. The identity must
include a declared component type consistent with
the component category. The component
implementation declaration may also declare the
implementation as an extension of another
implementation (extends subclause).

Port Group Type

Port group type declarations establish the identity
(name) and define the features and properties of a
grouping of ports and/or port groups. Within the
features declaration, a port group may be defined
as the inverse of another port group. A port group
type declaration may also declare the port group as
an extension of another port group type (extends).

Package

The package declaration establishes the identity
(name) of a collection of AADL declarations, groups
those declarations into private and public sections,
and declares properties associated with a package.
Packages are used to logically organize AADL
declarations. AADL component type,
implementation, and port group declarations placed
in AADL packages can be referenced by
declarations in other packages.

7 The complete set of graphical symbols for AADL components is presented in “Graphical AADL

Notation,” a draft document at the time of the publishing of this technical note.

Section 4: AADL System Models and Specifications

CMU/SEI-2006-TN-011 13

Table 4-1: AADL Declarations (cont.)

Property Set

Property set declarations introduce additional
properties, property types, and property constants
that are not included as predeclared AADL
properties.8 Each property set has a unique global
name and provides a unique namespace for the
items declared in it. In other words, properties and
property types declared in a property set are
referenced by property set name and item name.

Annex Library

Annex library declarations establish the identity
(name) and define the contents of a set of reusable
declarations that are not part of the standard AADL
language. Annex declarations are used to extend
AADL’s core modeling and analysis capabilities.

4.2 Graphical Representations
The AADL’s graphical notation facilitates a clear visual presentation of a system’s structural
hierarchy and communication topology and provides a foundation for distinct architecture
perspectives. Graphical notation elements for AADL components are shown in Figure 4-2.
The letter-shaped AADL icon () is used to indicate a different semantics than that
represented by a similar graphical symbol in the Unified Modeling Language (UML). This
symbol is not required in notation; it can be used where a distinction from a UML symbol is
necessary. Additional symbols, such as circles, are used to represent component properties
(e.g., the period of a thread).

Figure 4-2: AADL Graphical Notation

8 There is a standard predeclared property set named AADL_Properties that is a part of every

AADL specification [SAE 06a].

Platform

processor

memory

device

bus

process

thread

data

subprogram

Software

thread group

Composite

system package

Application Software Execution Platform

Section 4: AADL System Models and Specifications

14 CMU/SEI-2006-TN-011

4.3 Example Specification
Table 4-2 contains an excerpt from an AADL textual specification and includes sample
graphical representations of portions of the specification.9 The excerpt shows simplified
component type, component implementation, and subcomponents declarations (i.e.,
only some of the features, flows, or properties are declared) and illustrates the
pattern other examples in this document will follow.

In the example shown in Table 4-2, related type and implementation declarations are
grouped together. Individual declarations can be arranged in any order within an AADL
specification. For example, a component type declaration that includes a specific port
group as one of its interfaces (features) can precede that port group’s type declaration.
An alternative organization might involve grouping together all type declarations. In addition,
all or some of the declarations shown in Table 4-2 can be partitioned into groups using
packages. The options provided by packages and their implications are discussed in
Section 12 (Organizing a Specification).

The excerpt in Table 4-2 contains one process and two thread component type
declarations. The process type definition has the component type identifier (name)
control_processing. Two data ports, in data port and out data port, are
declared for this process type. The sensor_data and command_data data types are
declared in individual data type declarations.

The thread type definition identifiers are control_in and control_out. An
implementation declaration of the process type control_processing is shown.
The component implementation identifier is speed_control. An
implementation is referenced by using both the component type identifier and the
component implementation identifier, separated by a period (.). A reference to a
thread implementation input_processing_01 of the thread type
control_in is shown in the declaration of the subcomponent control_input. Thus,
control_input is an instance of the component implementation
control_in.input_processing_01.

Graphical representations of the process type declaration control_processing and
the process implementation declaration are shown in the latter portions of Table 4-2.
The process implementation symbol in the example is bounded with a bold line.
Bold-lining of an implementation symbol is optional. It can be useful in distinguishing
component type and component implementation representations visually. A solid black
triangular symbol represents a data port. Port and other features symbols are
discussed in Section 8 (Component Interactions).

9 In the example specifications shown here and in Sections 5–12, we typically follow the pattern of

displaying the textual representation followed by the graphical representation in portions of the
same table, as shown in Table 4-2. Where needed to provide clarification, we have placed the
textual and graphical representations in separate tables and figures.

Section 4: AADL System Models and Specifications

CMU/SEI-2006-TN-011 15

Table 4-2: A Simplified Example of an AADL Specification10

-- A process type definition with the component type
-- identifier (name) "control_processing" is shown below.

process control_processing
features
input: in data port sensor_data;
output: out data port command_data;
end control_processing;

-- Below is an implementation of process type "control_processing"
-- The component implementation identifier(name)is "speed_control"
-- The implementation is referenced by using both the component type
-- identifier and the component implementation identifier, separated
-- by a period(.)in the form: control_processing.speed_control.
-- A reference to a thread implementation “input_processing_01”
-- of the thread type “control_in” is shown below in the
-- declaration of the subcomponent “control_input”

process implementation control_processing.speed_control
subcomponents
control_input: thread control_in.input_processing_01;
control_output: thread control_out.output_processing_01;
end control_processing.speed_control;

-- The declaration of the thread type “control_in” is shown below.
thread control_in
end control_in;

-- The declaration of the thread implementation
-- “control_in.input_processing_01” is shown below.
thread implementation control_in.input_processing_01
end control_in.input_processing_01;

-- The declaration of the thread type “control_out” is shown below.
thread control_out
end control_out;

-- The declaration of the thread implementation
-- “control_out.output_processing_01” is shown below.
thread implementation control_out.output_processing_01
end control_out.output_processing_01;

-- The declaration of the data type “sensor_data” is shown below.
data sensor_data
end sensor_data;

-- The declaration of the data type “command_data” is shown below.
data command_data
end command_data;

10 Comment lines in an AADL specification are prefaced by two dashes (--).

Section 4: AADL System Models and Specifications

16 CMU/SEI-2006-TN-011

Table 4-2: A Simplified Example of an AADL Specification (cont.)

input output
control_processing

process type control_processing

control_processing.speed_control

control_input control_output
input output

process implementation control_processing.speed_control

4.4 Type Declarations
The structures for a component type declaration (area labeled) and a type declaration that
extends another type (area labeled) are shown in Table 4-3, along with sample component
type declarations (area labeled). The sample type declarations are for a process type
simple_speed_control and a thread type data_management. The first line of
each declaration begins with the appropriate component category reserved word in boldface.
In these examples, process and thread are reserved words.

Table 4-3: Sample Component Type Declarations

component_category type_identifier
 features
 flows
 properties

end type_identifier ;

component_category type_identifier
 extends unique_component_type_identifier
 features
 flows
 properties
end type_identifier ;

Section 4: AADL System Models and Specifications

CMU/SEI-2006-TN-011 17

Table 4–3: Sample Component Type Declarations (cont.)

process simple_speed_control
features
raw_speed: in data port speed_type;
toggle_mode: in event port;
throttle_cmd: out data port throttle_data;
flows none;
end simple_speed_control;

thread data_management extends system_management
features
in_data: refined to in data port speed_type;
out_data: out data port throttle_data;
end data_management;

data speed_type
end speed_type;

data throttle_data
end throttle_data;

thread system_management
features
in_data: in data port;
end system_management;

The component type classifier (name) of the type follows the component category
reserved word. A component type declaration may contain up to four subclauses that are
identified with these reserved words:

• features: specifies the interaction points with other components, including the inputs
and accesses required by the component and all the outputs and items the component
provides

• flows: defines specifications of logical flows through the component from incoming
interaction points to outgoing interaction points (These flows can be used to specify end-
to-end flows without having to expose or have available any implementation detail
of the component. Flows can trace data, control, or mixed flow by connecting event and
data ports.)

• properties: specifies properties of the component that apply to all instances of this
component unless overwritten in implementations or extensions

• extends: is used where a type extends another type, as shown for the thread type
data_management in Table 4-3

If there are no entries under the subclause reserved words features, flows, or
properties, they may be omitted, or the reserved word statement none can be used to
signify explicitly that there are no entries. For example, the reserved word subclause flows
is omitted in the thread type declaration for data_management and none is used in the

Section 4: AADL System Models and Specifications

18 CMU/SEI-2006-TN-011

other empty subclause cases in Table 4-3. The use of none explicitly designates that the
subclause is empty. The use of none avoids the misinterpretation of a developer’s accidental
omission of a subclause declaration as intentional.

In Table 4-3, these declarations under the features subclause in the type declaration for
simple_speed_control define ports for the type:

raw_speed: in data port speed_type;
toggle_mode: in event port;
throttle_cmd: out data port throttle_data;

Notice that there is one in data port declaration in the features section of the type
system_management. The type declaration for data_management extends the type
system_management. Within this type extension declaration, the in data port
in_data declaration is completed by including refined to and adding the data type
speed_type to the port declaration, and an out data port declaration is added.

A component type declaration is terminated by the reserved word end followed by the
component’s type classifier and a semicolon (;).

4.5 Implementation Declarations
A component implementation declaration structure (and) and a sample declaration
() are shown in Table 4-4. The basic form () declares a distinct implementation. The
second form () includes the reserved word extends, indicating that the declared
implementation extends another.

In the sample declaration (in Table 4-4), a thread implementation with the name
control_laws.control_input is declared as an implementation of the type
control_laws. The implementation name is formed using the type identifier
followed by a specific identifier for the implementation. These are separated by a period
(.). Within the control_laws.control_input declaration, a single data
subcomponent is declared, the reserved word statement (none) is used for the calls
subclause, and the other subclauses are omitted.

Section 4: AADL System Models and Specifications

CMU/SEI-2006-TN-011 19

Table 4-4: Component Implementation Declarations

component_category implementation implementation_name
 refines type
 subcomponents
 calls
 connections
 flows
 modes
 properties
end implementation_name ;

component_category implementation implementation_name
 extends another_implementation_name
 refines type
 subcomponents
 calls
 connections
 flows
 modes
 properties
end implementation_name ;

thread control_laws
end control_laws;

data static_data
end static_data;

thread implementation control_laws.control_input
subcomponents
configuration_data: data static_data;
calls none;
end control_laws.control_input;

4.6 Package Declarations
Packages provide a way to organize component type declarations, implementation
declarations, and property associations within an AADL specification. Each package
introduces a distinct namespace for component classifier declarations, port group
type declarations, annex library declarations, and property associations.

For example, a component type may be declared within a package and used in multiple
subsystem declarations. This is shown in Table 4-5 where the package
acutators_sensors includes a device speed_sensor that is used in the primary
and backup implementation of the system control. Note that the package name
with a double colon (::) is used to precede the device speed_sensor when it is
referenced (e.g., in the subcomponent declaration within the implementation
declarations). The comment line (-- …) is used to indicate other declarations that are not
shown. Packages are discussed in more detail in Section 12.1 (Packages).

Section 4: AADL System Models and Specifications

20 CMU/SEI-2006-TN-011

Table 4-5: Example Packages

package actuators_sensors
public
device speed_sensor
end speed_sensor;
-- …
end actuators_sensors;

system control
end control;

system implementation control.primary
subcomponents
speed_sensor: device actuators_sensors::speed_sensor;
-- …
end control.primary;

system implementation control.backup
subcomponents
speed_sensor: device actuators_sensors::speed_sensor;
-- …
end control.backup;

4.7 Property Set Declarations
Property set declarations allow the addition of properties to the core AADL
property set. These additions can be used to support specialized modeling and analysis
capabilities that can be defined in AADL annexes. Declarations in an AADL specification can
refer to packages and property sets that may be separately stored. More details on
property set declarations can be found in Section 11.3 (Defining New Properties).
References to property names, types, and constants declared within a property set
are prefaced by the name of the property set.

4.8 Annex Library Declarations
Annex library declarations enable extensions to the core language concepts and syntax.
Often these extensions support custom analyses using specialized models and abstractions
(e.g., an error annex that supports reliability analysis). Annex libraries define a sublanguage
that can be used in annex subclauses within component type and implementation
declarations. Annex libraries are declared within packages and annex subclauses can be
included within component type and implementation declarations. These subclauses use
the elements declared in the annex library (e.g., associating values or expressing assertions
with elements of the annex).11

11 The language can also be extended through annex documents, which are approved extensions to the

core AADL standard.

Section 4: AADL System Models and Specifications

CMU/SEI-2006-TN-011 21

4.9 Namespaces
There is a global namespace for an AADL specification. Packages and property set
names are in the global namespace. Their content can be named anywhere by preceding it
with the package name. Component declarations placed directly in an AADL specification
are visible only within that AADL specification. They are not accessible from within
packages or other AADL specifications; they are considered to reside in an anonymous
namespace. An AADL specification acts as a local work area whose component declarations
are only locally visible.

4.10 Partial Specifications
A number of declarations within a syntactically and semantically correct specification can be
partially completed. For example, neither the identity (type or implementation) of a
component contained within another nor the data type for the ports in a data connection
between components needs to be specified until a complete representation is instantiated
from the specification (i.e., the design is finalized).

The flexibility to develop partial specifications can be used effectively during design,
especially in the early stages where details may not be known or decided upon. This
flexibility allows the syntactic checking of an incomplete specification and enables extended
semantic, domain, or project-specific analysis to be conducted. For example, the detailed
signal timing can be specified and signal latency can be analyzed without a complete or
detailed specification of the representation of data communicated through ports or other
elements of the design. Similarly, using the flow specification construct, end-to-end flows can
be analyzed without the system hierarchy being detailed to the level required for
instantiation.

4.11 Extends, Refines, and Partial Specification
When coupled with the extends, refines, and implementation facilities of the
language, partial specification can be used to define a core type or implementation
pattern. This core pattern can be used to generate a family of components (i.e., core patterns
with less detail and descendants with more specific and modified declarations). Table 4-6
shows an example of the use of extends. The basic system component type
declaration forms the core for two type extensions, basic_plus and control. Within the
extensions, the data input port declaration input_data is completed with a data type,
and an additional port is added.

A more detailed discussion of the extension and refinement capabilities and additional
example patterns is presented in Section 12.2 (Design Patterns).

Section 4: AADL System Models and Specifications

22 CMU/SEI-2006-TN-011

Table 4-6: A Simple Extends and Refines Example

system basic
features
input_data: in data port;
-- …
end basic;
--
system basic_plus extends basic
features
input_data: refined to in data port sensor_data;
in_event: in event port;
-- …
end basic_plus;
--
system control extends basic
features
input_data: refined to in data port speed_data;
in_event_data: in event data port;
-- …
end control;
--
data sensor_data
end sensor_data;
--
data speed_data
end speed_data;

Section 5: Software Components

CMU/SEI-2006-TN-011 23

5 Software Components

Software component abstractions represent processed source text (executable binary images)
and execution paths through executable code. Executable binary images (i.e., executable code
and data) are the result of processing (such as compiling or linking) source text associated
with a component. A component’s source text may be written in a conventional programming
language (e.g., Ada, Java, or C), domain-specific modeling language (e.g.,
MatLab/Simulink), or hardware description language (e.g., VHDL). The source text may also
be an intermediate product of processing those representations (e.g., an object file).

The AADL software component abstractions are

• process (Section 5.1): represents a protected address space

• thread (Section 5.2): represents a unit of concurrent execution

• thread group (Section 5.3): represents a compositional unit for organizing threads

• data (Section 5.4): represents data types and static data in source text

• subprogram (Section 5.5): represents callable sequentially executable code

5.1 Process
The process abstraction represents a protected address space, a space partitioning where
protection is provided from other components accessing anything inside the process. The
address space contains

• executable binary images (executable code and data) directly associated with the
process

• executable binary images associated with subcomponents of the process

• server subprograms (executable code) and data that are referenced by external
components

A process does not have an implicit thread. Therefore, to represent an actively
executing component, a process must contain a thread.

5.1.1 Textual Representation

Table 5-1 contains a partial listing of the textual specification for a process. The process
is shown with examples of all three of its allowed subcomponent categories: (1) thread, (2)
thread group, and (3) data. In this listing, simplified type and implementation
declarations for the components are provided. Two ports are shown, one as input and one as
output for the process. In a complete specification, connections that define the

Section 5: Software Components

24 CMU/SEI-2006-TN-011

information flow would be declared within the process implementation. Only the
subcomponent declarations of the process implementation of
control_processing.speed_control are shown explicitly. Other details of the
specification are not included. These omissions are legal for a syntactically correct partial
specification as discussed in Section 4.10 (Partial Specifications).

Table 5-1: Textual Representation of a Sample Process

process control_processing
features
input: in data port;
output: out data port;
end control_processing;

process implementation control_processing.speed_control
subcomponents
control_input: thread control_in.input_processing_01;
control_output: thread control_out.output_processing_01;
control_thread_group: thread group
control_threads.control_thread_set_01;
set_point_data: data set_point_data_type;
end control_processing.speed_control;

thread control_in
end control_in;

thread implementation control_in.input_processing_01
end control_in.input_processing_01;

thread control_out
end control_out;

thread implementation control_out.output_processing_01
end control_out.output_processing_01;

thread group control_threads
end control_threads;

thread group implementation control_threads.control_thread_set_01
end control_threads.control_thread_set_01;

data set_point_data_type
end setpoint_data_type;

5.1.2 Graphical Repesenation

A graphical representation of the process implementation from Table 5-1
control_processing.speed_control is shown in Figure 5-1. The process is
shown with examples of its allowed subcomponent categories: thread, thread group,
and data. As shown in Figure 5-1, two threads (control_input and
control_output), a single data component (set_point_data), and a thread
group (control_thread_group) are contained within the process
implementation control_processing.speed_control.

Section 5: Software Components

CMU/SEI-2006-TN-011 25

c o n t r o l _ p r o c e s s i n g . s p e e d _ c o n tro l

c o n tro l_
in p u t

c o n tro l_
o u tp u t

s e t_ p o in t_ d a ta c o n tro l_ th re a d _ g ro u p

Figure 5-1: Graphical Representation of a Sample Process

5.1.3 Properties

For the process and its subcomponent threads, predeclared properties for processes
enable the specification of the

• runtime enforcement of memory protection

• relevant source file information

• source file loading times

• scheduling protocols

• binding constraints

In addition, there are properties that can be inherited and shared by a process’s
subcomponent threads (e.g., Period, Deadline, or Actual_Processor_Binding).
These include predeclared properties as well as new properties, defined as
prescribed in Section 11.3 (Defining New Properties).12

5.1.4 Constraints

An AADL process represents only a protected address space. Consequently, processes
must contain at least one explicitly declared thread or thread group subcomponent. In
other words, it is not equivalent to a POSIX process that represents both a protected address
space and an implicit thread.

Table 5-2 summarizes the permitted type declaration and implementation declaration
elements of a process. A process can only be a subcomponent of a system component.
A summary of the allowed subcomponent relationships and features is included in the
Appendix on pages 117–119.

12 There is a standard predeclared property set named AADL_Properties that is a part of every

AADL specification [SAE 06a].

Section 5: Software Components

26 CMU/SEI-2006-TN-011

Table 5-2: Summary of Permitted Process Declarations
Category Type Implementation

process

Features:
• server subprogram
• port
• provides data access
• requires data access
Flow specifications: yes
Properties yes

Subcomponents:
• data
• thread
• thread group
Subprogram calls: no
Connections: yes
Flows: yes
Modes: yes
Properties yes

5.2 Thread
A thread is a concurrent schedulable unit of sequential execution through source code.
Multiple threads represent concurrent paths of execution. A variety of execution
properties can be assigned to threads, including timing (e.g., worst case execution
times), dispatch protocols (e.g., periodic, aperiodic, etc.), memory size, and processor
binding.

5.2.1 Textual Representation

Sample thread type, implementation, and subcomponents declarations are shown
in Table 5-3. In Table 5-3, there are two thread type and three thread
implementation declarations. Two of the thread implementation declarations
describe separate implementations of the same thread type data_input. Instances of
threads are defined in subcomponents subclause declarations of the process
implementation data_management.

Related type and implementation declarations are grouped together in this example.
This grouping of declarations is used for clarity and is not a required organization within a
specification.

Section 5: Software Components

CMU/SEI-2006-TN-011 27

Table 5-3: A Sample Thread Declaration

thread data_processing
end data_processing;

thread implementation data_processing.integrated_data_processing
end data_processing.integrated_data_processing;

thread data_input
end data_input;

thread implementation data_input.roll_data_input
end data_input.roll_data_input;

thread implementation data_input.pitch_data_input
end data_input.pitch_data_input;

process data_management
end data_management;

process implementation
data_management.autonomous_submarine_data_management
subcomponents
roll_input: thread data_input.roll_data_input;
pitch_input: thread data_input.pitch_data_input;
attitude_data_processing: thread
data_processing.integrated_data_processing;
end data_management.autonomous_submarine_data_management;

5.2.2 Graphical Representation

A graphical representation of the thread implementation
control_laws.control_input and its associated textual representation are shown in
Table 5-4. No interfaces for the type or other details of the type or implementation
declarations are shown.

In the example, the data instance configuration_data is defined as a subcomponent
of the thread, and the referenced identifier is a data type rather than a data
implementation. This is legal only if there are no implementation declarations of
the data type anywhere within the specification.

Section 5: Software Components

28 CMU/SEI-2006-TN-011

Table 5-4: A Sample Thread Implementation with One Subcomponent

thread control_laws
end control_laws;

data static_data
end static_data;

thread implementation
control_laws.control_input
subcomponents
configuration_data: data
static_data;
end control_laws.control_input;

5.2.3 Thread Execution

A graphical state machine representation of thread execution is shown in Figure 5-2. A
round-cornered rectangle represents an execution state of a thread or a composite state that
includes at least one execution state. The ovals are non-execution states. Transitions between
states are represented by directed arcs. Arcs may originate, join, diverge, or terminate at
junction points depicted as small circles.

Instances of a thread can transition between various scheduling states as the result of
normal execution (e.g., preemption or completion of initialization) or faults/errors. There are
predefined entry points for each of the thread execution states: Initialize, Compute, and
Recover. The initialize and compute entry points are used for normal execution.

If thread execution results in a fault that is detected, the source text may handle the error. If
the error is not handled in the source text, the thread is requested to recover and prepare
for the next dispatch. If an error is considered unrecoverable, its occurrence is propagated as
an event through the thread’s predeclared out event data port Error (not shown in
Figure 5-2). All threads have an Error out event data port that allows an
unrecoverable error with descriptive information to be signaled.

configuration_data

control_laws.control_input

Section 5: Software Components

CMU/SEI-2006-TN-011 29

Figure 5-2: Thread Execution State Machine

5.2.4 Properties

Predeclared properties support the detailed description of each of the execution phases
of a thread. There are entry point properties that specify entry into code associated
with each of these execution phases (Figure 5-2):

1. Initialize allows threads to perform application specific initialization.

2. Activate allows actions to restore application states between mode switches.

3. Compute represents the code to be executed on every thread dispatch.

4. Recover allows threads to perform fault recovery actions.

5. Deactivate allows actions to save application states between mode switches.

6. Finalize executes when thread is asked to terminate as part of a process unload or stop.

In addition, there are execution time and deadline properties for each of these execution
phases (not shown in Figure 5-2).

A thread’s scheduling-related properties include Dispatch_Protocol and Period.
The supported protocols are

• periodic: repeated dispatches occurring at a specified time interval (a Period)

• aperiodic: event-triggered dispatch of threads

• sporadic: event-driven dispatch of threads with a minimum dispatch separation

• background: a dispatch initiated once with execution until completion

Periodic, aperiodic, and sporadic protocols typically involve hard deadlines for the thread.
The predeclared and user-defined thread properties can be used to specify critical
runtime aspects of a thread within a system’s architectural representation, enabling the
early analyses of thread behavior.

Section 5: Software Components

30 CMU/SEI-2006-TN-011

Table 5-5 is an example of some property associations for a thread. Entry points and
associated execution times are declared for initialization and nominal execution.

Table 5-5: Sample Thread Properties

thread control
properties
-- nominal execution properties
Compute_Entrypoint => "control_ep";
Compute_Execution_Time => 5 ms .. 10 ms;
Compute_Deadline => 20 ms;
Dispatch_Protocol => Periodic;
-- initialization execution properties
Initialize_Entrypoint => "init_control";
Initialize_Execution_Time => 2 ms .. 5 ms;
Initialize_Deadline => 10 ms;
end control;

5.2.5 Constraints
Table 5-6 summarizes the legal subclause declarations for a thread.

Table 5-6: Summary of Permitted Thread Subclause Declarations

Category Type Implementation

thread

Features:
• server subprogram
• port
• provides data access
• requires data access
Flow specifications: yes
Properties yes

Subcomponents:
• data
Subprogram calls: yes
Connections: yes
Flows: yes
Modes: yes
Properties yes

A thread executes within the protected virtual address space of a process, either as an
explicitly declared subcomponent or as a subcomponent of a thread group within a
process. Thus, threads must be contained within (i.e., only be a subcomponent of) a
process or a thread group. Multiple concurrent threads can exist within a process.

A summary of the allowed subcomponent relationships and features is included on pages
117–119 in the Appendix.

Section 5: Software Components

CMU/SEI-2006-TN-011 31

5.3 Thread Group
A thread group is a component abstraction for logically organizing thread, data, and
thread group components within a process. Thread groups do not represent a virtual
address space or a unit of execution. They provide a foundation for the separation of concerns
in the design, defining a single reference to multiple threads and associated data (e.g., threads
with a common execution rate or all threads and data components needed for processing
input signals).

5.3.1 Textual Representation

Table 5-7 is a sample textual specification for a thread group that contains a thread
component, two data components, and another thread group. Simplified thread
group type and implementation declarations are shown. For example, only the
subcomponents declarations part of the control.roll_axis component
implementation declaration is shown. No details of the thread group
implementation control_laws.roll are shown. Notice that the data
subcomponent declarations control_data and error_data reference data
implementation declarations rather than data type declarations, reflecting the
flexibility that static data components can be declared at any level of the hierarchy. The
thread group type declaration for control includes a property association that
defines a Period of 50 ms. This value is assigned to (inherited by) all of the threads
contained in the thread group.

Table 5-7: A Sample Thread Group AADL Textual Specification

thread group control
properties
Period => 50 ms;
end control;
--
thread group implementation control.roll_axis
subcomponents
control_group: thread group control_laws.roll;
control_data: data data_control.primary;
error_data: data data_error.log;
error_detection: thread monitor.impl;
end control.roll_axis;
--
thread monitor
end monitor;
--
thread implementation monitor.impl
end monitor.impl;
--
data data_control
end data_control;
--
data implementation data_control.primary

Section 5: Software Components

32 CMU/SEI-2006-TN-011

Table 5-7: A Sample Thread Group AADL Textual Specification

end data_control.primary;
--
data data_error
end data_error;
--
data implementation data_error.log
end data_error.log;
--
thread group control_laws
end control_laws;
--
thread group implementation control_laws.roll
end control_laws.roll;

5.3.2 Graphical Representation

Figure 5-3 contains a graphical representation of the implementation of the thread
group control.roll_axis shown textually in Table 5-7. Notice that the names
(identifiers) of the graphical subcomponents of the thread group match those contained
in the textual representation of the thread group’s implementation declaration. Partial
declarations are permitted in the initial specification of the system (e.g., subcomponent
declarations may not have component type or implementation references). This partial
specification capability is particularly useful during early design stages where details may not
be known or decided. Component classifier references can be added or completed in
subcomponent refinements or declared in component implementation extensions. For
example, in Table 5-7 the declaration for the subcomponent error_detection does not
have to include the thread component classifier monitor.impl. This reference
could be added later in an extension of the thread group implementation
control.roll_axis.

Figure 5-3: A Sample Thread Group Graphical Representation

control_group

control. roll_axis

error_detection

control_data
error_data

Section 5: Software Components

CMU/SEI-2006-TN-011 33

5.3.3 Properties

Predeclared thread group properties include declarations relating to the
specification of

• source text

• timing characteristics

• relevant memory, processor, and connection bindings13

For example, there are Actual and Allowed_Processor_Binding properties for
threads within the thread group, as well as properties that describe thread
handling during mode changes (e.g., Active_Thread_Handling_Protocol that
specifies the protocol to use for execution at the time instant of an actual mode switch).14

5.3.4 Constraints

A thread group can be a subcomponent only of a process or another thread
group. Table 5-8 summarizes the permitted elements of a thread group’s type and
implementation declarations.

Table 5-8: Elements of a Thread Group Component

Category Type Implementation

thread
group

Features:
• server subprogram
• port
• provides data access
• requires data access
Flow specifications: yes
Properties yes

Subcomponents:
• data
• thread
• thread group
Subprogram calls: no
Connections: yes
Flows: yes
Modes: yes
Properties yes

A summary of the allowed subcomponent relationships and features is included on pages
117–119 in the Appendix.

13 The mapping of software to hardware components of a system that are required to produce a

physical system implementation is called binding [SAE 06a].
14 Actual_Processor_Binding, Allowed_Processor_Binding, and

Active_Thread_Handling_Protocol are predeclared properties in the standard
predeclared property set AADL_Properties.

Section 5: Software Components

34 CMU/SEI-2006-TN-011

5.4 Data
The AADL data abstraction represents static data (e.g., numerical data or source text) and
data types within a system. Specifically, data component declarations are used to represent

• application data types (e.g., used as data types on ports and parameters)

• the substructure of data types via data subcomponents within data implementation
declarations

• data instances

Data types in the application system can be modeled by data component type and
implementation declarations. A data type (and implementation) declaration can
be used to define the data associated with ports and parameters. It is sufficient to model an
application source text data type with a data component type and relevant property
declarations; it is not necessary to declare a data implementation. Consistency checks
can be done on the data type associated with connections between ports and parameters.
Data subcomponent declarations can be used to define the substructure of data types and
instances. For example, fields of a record can be declared as data subcomponents in a data
implementation declaration.

Data instances are represented by data subcomponent declarations within a software
component or system implementation. Currently data subcomponents cannot be
declared in subprograms. For example, data instances within source text (e.g., the instance
variables of a class or the fields of a record) are represented by data subcomponent
declarations in a data component implementation. These data instances can be
declared as accessible by multiple components as outlined in Section 8.3 (Subcomponent
Access). Data component types can have subprograms as features, allowing for
modeling of abstract data types or classes with access methods.

5.4.1 Textual Representation

Sample data type and implementation declarations are shown in Table 5-9 that
includes three data type declarations and a data implementation declaration
address.others of the data type declaration address. In addition, a thread
implementation declaration is shown with data subcomponents that reference the
data types defined in Table 5-9.

As the commented description in the table explains, the first part of the table shows the data
type string used in a port declaration. Specifically, it shows the declaration of a data
type speed_data_type used to declare the data type for an input data port of the
process controller. The property association defines the size of the data type as
16 bits. Only relevant portions of the controller process type declaration are included.
The second part of the table shows an example of the declaration of the substructure of a
data implementation. The substructure of the data implementation

Section 5: Software Components

CMU/SEI-2006-TN-011 35

address.others consists of four data subcomponents with data types string and
int. In the third and final portion of the table, the thread implementation
declaration for address_processing.address_lookup includes a specific data
instance of the data implementation address.others as a subcomponent.

Notice that the data subcomponent declarations within the data implementation
address_others reference only the data type declaration. Subcomponents
subclauses can reference a data type declaration rather than a data implementation
declaration only if there is no more than one implementation of that data type.

Table 5-9: Sample Data Component Declarations

-- string as a data type used in a port declaration --
data speed_data_type
properties
Source_Data_Size => 16 bits;
end speed_data_type;
--
process controller
features
input: in data port speed_data_type;
end controller;
--
-- a data implementation with substructure
data address
end address;
--
data implementation address.others
subcomponents
street : data string;
streetnumber: data int;
city: data string;
zipcode: data int;
end address.others;
--
-- supporting data declarations
data string
end string;
--
-- int as type
data int
properties
Source_Data_Size => 64b;
end int;
--
-- a data instance of the data implementation “address.others”
thread address_processing
end address_processing;
--
thread implementation address_processing.address_lookup
subcomponents
address_01: data address.others;
end address_processing.address_lookup;

Section 5: Software Components

36 CMU/SEI-2006-TN-011

5.4.2 Graphical Representation

Figure 5-4 contains graphical and corresponding textual representations for the data
subcomponents of the data implementation address.others and the thread
implementation address_processing.address_lookup presented in

Table 5-9.

Figure 5-4: Sample Data Component Graphical Representations

5.4.3 Properties

The predeclared properties for data components enable specification of

• source text for the data component

• name of the relevant data type declaration

• name of the relevant static data variable in the source text

• data size

• concurrency access protocol for shared data

Base types can be modeled using data types by

1. defining a new property (such as BaseType) that takes a (data) classifier as
property value

2. applying this property to data components

3. declaring data component base types (such as SignedInt16 or UnsignedInt8)

Section 5: Software Components

CMU/SEI-2006-TN-011 37

For example, BaseType => classifier BaseTypes::SignedInt16; could be a
property declared in the data type speed_data_type, where the data type
SignedInt16 is declared in the package BaseTypes.

5.4.4 Constraints

Table 5-10 summarizes the legal elements within data type and data implementation
declarations. Notice that only data components can be subcomponents within a data
component.

A data component can be a subcomponent of a data, thread, thread group,
process, or system component. A summary of the allowed subcomponent relationships
and features is included on pages 117–119 in the Appendix.

Table 5-10: Legal Elements of Data Type and Implementation Declarations

Category Type Implementation

data

Features:
• subprogram
• provides data access
Flow specifications: no
Properties yes

Subcomponents:
• data
Subprogram calls: no
Connections: access
Flows: no
Modes: yes
Properties yes

A data subcomponent subclause can reference a data type declaration that does not have a
data implementation. For example, the reference for the subcomponent street of
the data implementation address.others shown in Figure 5-4 is to the data
type string. However, if a data type declaration has more than one associated data
implementation declaration, both the component type and a component
implementation must be present in a component classifier reference in order to
completely identify the classifier.

5.5 Subprogram
The subprogram component abstraction represents sequentially executable source text—a
callable component with or without parameters that operates on data or provides server
functions to components that call it. A subprogram and its parameter signature are
declared through component declarations but are not instantiated as subcomponents. Instead,
calls to subprograms are declared in calls sequences in thread and subprogram
implementations. More details on calls to subprograms and example calls declarations
are provided in Section 8.4 (Subprogram Calls).

Section 5: Software Components

38 CMU/SEI-2006-TN-011

The modeling roles for subprograms include the representation of

• a method call for operation on data

• basic program calls and call sequencing

• remote service/procedure calls

These calls can include data transfer into or out of the subprogram. Parameters, declared
as features of a subprogram, provide the interface for the transfer of data into or out of
a subprogram.

5.5.1 Textual Representation

Table 5-11 is an example of a subprogram representing a service (method) call for
operation on data. It shows the relevant component type and implementation
declarations and the declaration of that subprogram as one of the features
scale_acc_data within a data component accelerometer_data. The feature
scale_acc_data represents an entry point into source text that operates on the data
component accelerometer_data.

Table 5-11: Subprogram Textual Representation

subprogram scale_data
end scale_data;
subprogram implementation scale_data.scale_sensor_data
end scale_data.scale_sensor_data;
data accelerometer_data
features
scale_acc_data: subprogram scale_data.scale_sensor_data;
end accelerometer_data;
process sensor_systems
end sensor_systems;
process implementation sensor_systems.sensor_processing
subcomponents
acc_data: data accelerometer_data;
scale_it: thread process_data.scale;
end sensor_systems.sensor_processing;

5.5.2 Graphical Representation

Figure 5-5 contains graphical and corresponding textual representations for the process
implementation sensor_systems.sensor_processing shown in Table 5-11.
The subprogram scale_acc_data is represented by an oval that adorns the data
subcomponent acc_data of the process implementation
sensor_systems.sensor_processing. The thread scale_it is not shown in
the figure.

Section 5: Software Components

CMU/SEI-2006-TN-011 39

acc_data

sensor_systems.sensor_processing

scale_acc_data

Figure 5-5: Subprogram Graphical Representation

Table 5-12 shows both textual (upper portion) and graphical (lower portion) representations
of an example of a subprogram abstraction representing a server subprogram.

In this textual representation, the two process implementation declarations
(control.temp_control and manage_data.manage_temp) are bound to separate
memory components (e.g., memories associated with individual processing nodes on a
distributed computing network). The thread implementation
control_law.linear within the control.temp_control process
implementation calls the subprogram acquire.temp that is declared as a
server subprogram feature in the thread type read.

In the graphical representation of the specification shown in the lower portion of Table 5-12,
the subroutine entry point read_it is identified as a feature of the subcomponent thread
temp_reader. In addition, the call get_temp is shown in the thread
control.temp_control, and the binding of this call to the read_it subprogram
is shown with an arrowed line. This call can be a remote call, where the server
subprogram thread temp_reader is bound to a separate processor than the
calling thread linear01. More details on subprogram calls and a remote client-
server example can be found in Section 8.4 (Subprogram Calls).

Table 5-12: Example Textual and Graphical Subroutine Declarations

process control
end control;
--
process implementation control.temp_control
subcomponents
linear01: thread control_law.linear;
end control.temp_control;
--
thread control_law
end control_law;
--
thread implementation control_law.linear
calls {
 get_temp: subprogram acquire.temp; };
end control_law.linear;

Section 5: Software Components

40 CMU/SEI-2006-TN-011

Table 5-12: Example Textual and Graphical Subroutine Declarations (cont.)

process manage_data
end manage_data;
--
process implementation manage_data.manage_temp
subcomponents
temp_reader: thread read.read_temp;
end manage_data.manage_temp;
--
thread read
features
read_it: server subprogram acquire.temp;
end read;
--
thread implementation read.read_temp
end read.read_temp;
--
subprogram acquire
end acquire;
--
subprogram implementation acquire.temp
end acquire.temp;

linear01

control.temp_control

temp_reader

manage_data.manage_temp

read_it

get_temp

server
subprogram call

5.5.3 Properties

Predeclared subprogram properties include declarations relating to the

• source text for the subprogram

• memory requirements

• memory binding

• characteristics related to calls into the subprogram

Section 5: Software Components

CMU/SEI-2006-TN-011 41

5.5.4 Constraints

Table 5-13 summarizes the permitted elements of a subprogram’s component type and
implementation declarations.

Table 5-13: Restrictions on Subprogram Declarations

Category Type Implementation

subprogram

Features:
• out event port
• out event data port
• port group
• requires data access
• parameter
Flow specifications: yes
Properties yes

Subcomponents:
• none
Subprogram calls: yes
Connections: yes
Flows: yes
Modes: yes
Properties yes

The interactions of subprograms are constrained to

• event-based interfaces: out event port, out event data port, and a port
group consisting only of these event port types

• data interfaces: through parameters of calls to and returns from the subprogram

Out event ports and out event data ports support modeling subprograms that raise an
event (with or without associated data) that must be passed through an enclosing thread
to other components. A subprogram may require access to data but cannot contain static
data subcomponents.

Section 6: Execution Platform Components

42 CMU/SEI-2006-TN-011

6 Execution Platform Components

Execution platform components represent computational and interfacing resources within a
system. This representation includes complex hardware and associated software systems. For
example, in one model a Linux computing resource can be represented as a processor
and, in an implementation model of the processor, as a system with Linux
software mapped onto an execution platform processor.

There are four categories of execution platform components in the AADL:

1. processor (Section 6.1): represents components that execute threads

2. memory (Section 6.2): represents components that store data and code

3. bus (Section 6.3): represents components that provide access among execution platform
components

4. device (Section 6.4): represents components that interface to the external environment

Within an AADL specification, software components must be mapped onto execution
platforms through binding relationships. These bindings define where code is executed and
data and executable code are stored within a system. For example, a thread must be bound
to a processor for execution and a process must be bound to memory. Similarly,
connections among components within a system must be bound to appropriate execution
platform components (e.g., a simple connection is bound to a single bus or a connection
within a complex distributed system is bound to a sequence of buses and intermediate
processors and devices). Additional information on binding is in Section 7 (System
Structure and Instantiation).

A collection of execution platform components contained within an AADL system
abstraction can be used to model complex physical computational resources. For example,
memory that represents a hard disk and a processor that supports software execution within a
system can model a database server. Similarly, a collection of software and execution
platform components (i.e., a system implementation) can represent a virtual machine
layer within a layered system architecture model.

6.1 Processor
A processor is an abstraction of hardware and associated software that is responsible for
scheduling and executing threads. Processors can execute threads that are declared in
application software systems or threads that reside in components accessible from those
processors.

Section 6: Execution Platform Components

CMU/SEI-2006-TN-011 43

Processors themselves may have embedded software (e.g., an operating system) that
implements scheduling and other capabilities that support thread execution. Alternatively,
separate software components or other software virtual machines can supply this support,
provided that software is bound to memory that is accessible by the processor.

6.1.1 Textual and Graphical Representations

Table 6-1 shows a type and implementation declaration for a processor. Both textual
and corresponding graphical representations are shown. In this example, a single
processor system with memory contained inside of the processor is shown. No
other interconnections are required.

Table 6-1: A Sample Processor Textual and Graphical Representation

processor Intel_Linux
properties
Hardware_Source_Language=> VHDL;
Hardware_Description_Source_Text =>
"intel_vhdl_1, intel_vhdl_2";
end Intel_Linux;
--
processor implementation
Intel_Linux.Intel_Linux_01
subcomponents
HSRAM: memory RAM.Intel_RAM;
end Intel_Linux.Intel_Linux_01;
--
memory RAM
end RAM;
--
memory implementation RAM.Intel_RAM
end RAM.Intel_RAM;

In the textual representation, the properties subclauses define the hardware description
language (Hardware_Source_Language) and the files that contain the source text for
the hardware description (Hardware_Description_Source_Text). The
processor implementation declaration of Intel_Linux.Intel_Linux_01
includes a single memory subcomponent HSRAM. The memory subcomponent’s type and
implementation declarations are shown.

The corresponding graphical representations of type and implementation are shown to
the right of the textual representation in Table 6-1. The nesting of the memory graphic
(labeled HSRAM) within the processor graphic shows containment. The optional bold line
(discussed in Section 4.3) is not used for the processor implementation graphic.

Section 6: Execution Platform Components

44 CMU/SEI-2006-TN-011

6.1.2 Properties

Predeclared processor properties can be used in a processor declaration. In
addition to the hardware description properties included in the example from Table 6-1,
other properties include a Scheduling_Protocol property that must have a
value if threads are bound to the processor and an Allowed_Dispatch_Protocol
property that specifies the dispatch protocols supplied by the processor.15

6.1.3 Constraints

Table 6-2 summarizes the permitted elements of a processor’s type and implementation
declarations.

Table 6-2: Summary of Permitted Processor Declarations

Category Type Implementation

processor

Features:
• server subprogram
• port
• port group
• requires bus access
Flow specifications: yes
Properties yes

Subcomponents:
• memory
Subprogram calls: no
Connections: no
Flows: yes
Modes: yes
Properties yes

A processor can only be a subcomponent of a system component. A summary of the
allowed subcomponent relationships and features is included on pages 117–119 in the
Appendix.

6.2 Memory
Memory abstractions represent storage components for data and executable code (i.e.,
subprograms, data, and processes are bound to memory components). Memory
components include randomly accessible physical storage (e.g., RAM, ROM) or complex
permanent storage such as disks or reflective memory. Since they have a physical runtime
presence, memory components have properties such as word size and word count.

The memory component can represent memory inside of a processor or a separate
execution platform unit that must be connected to a processor through a bus. Memory banks
can be modeled as a single or composite memory unit.

15 There is a standard predeclared property set named AADL_Properties that is a part of every

AADL specification [SAE 06a].

Section 6: Execution Platform Components

CMU/SEI-2006-TN-011 45

6.2.1 Textual and Graphical Representations

An example memory declaration and its graphical representation are shown in Table 6-3. In
this example, a memory of the type RAM is declared with a single feature bus01 that
establishes that all instances of RAM require access to the bus membus.hsbus. No explicit
properties for this type are declared. The type and implementation declarations for
the requires bus access to bus01 are shown at the end of the listing.

The memory implementation RAM.compRAM declares that this implementation
of the memory type RAM includes memory subcomponents HSRAM01 and SRAM01. No
modes or properties are declared. The subcomponents of the memory
implementation RAM.compRAM are declared as implementations of a common type
XRAM. An expanded memory composition can be used to model a complicated memory
bank. These examples show that memory can only contain other memory components and
must be connected to a bus unless it is enclosed in a processor.

Table 6-3: A Sample Memory Textual and Graphical Representation

memory RAM
features
bus01: requires bus access membus.hsbus;
end RAM;
--
memory implementation RAM.compRAM
subcomponents
HSRAM01: memory XRAM.HSRAM;
SRAM01: memory XRAM.SRAM;
end RAM.compRAM;
--
memory XRAM
end XRAM;
--
memory implementation XRAM.HSRAM
end XRAM.HSRAM;
--
memory implementation XRAM.SRAM
end XRAM.SRAM;
--
bus membus
end membus;
--
bus implementation membus.hsbus

end membus.hsbus;

Section 6: Execution Platform Components

46 CMU/SEI-2006-TN-011

6.2.2 Properties

Predeclared memory properties include

• memory access protocol

• word size

• other important descriptive characteristics of storage units

• The default value for memory access (Memory_Protocol) is read–write but can be
associated with the values of read only or write only.

6.2.3 Constraints

Table 6-4 lists the permitted elements of memory type and implementation
declarations.

Table 6-4: Summary of Permitted Memory Declaration Subclauses

Category Type Implementation

memory

Features
• requires bus access
Flow specifications: no
Properties yes

Subcomponents:
• memory
Subprogram calls: no
Connections: no
Flows: no
Modes: yes
Properties yes

A memory component can only be contained within a memory, processor, or system
component. Moreover, an individual memory component must be contained in a
processor, declared a subcomponent of a memory unit, or connected to a processor
through a bus. A summary of the allowed subcomponent relationships and features is
included on pages 117–119 in the Appendix.

6.3 Bus
A bus represents hardware and associated communication protocols that enable interactions
among other execution platform components (i.e., memory, processor, and device).
For example, a connection between two threads, each executing on a separate
processor, is over a bus between those processors. This communication is specified
using access and binding declarations to a bus. Buses can be connected directly to
other buses to represent complex inter-network communications. Thus, connections between
components can be bound to a sequence of buses or a sequence of buses with intervening
processors.

Section 6: Execution Platform Components

CMU/SEI-2006-TN-011 47

6.3.1 Textual and Graphical Representations

Since a bus acts only as a shared component, its interactions (features) are specified as
bus access features in component type declarations. For example, a processor
requires access to a bus in order to communicate with memory that contains the threads
executing on that processor. Similarly, a bus may require access to another bus.
Alternatively, a system may provide access to one of its bus subcomponents.

Table 6-5 shows a portion of an AADL textual specification and its corresponding graphical
representation. Included in the example are a processor type declaration for
Intel_Linux and two bus type declarations for X_1553 and ARINC_629. The
processor type declaration for Intel_Linex includes a requires bus access
declaration for the bus X_1553.HS_1553 and the bus type declaration X_1553 includes
a requires bus access for the bus ARINC_629.HS_629. These required accesses
are shown in the graphic on the right side of Table 6-5. The implementation declarations
for both buses are also shown in the textual specification in Table 6-5.

Table 6-5: A Sample Bus Specification: Textual and Graphical Representation

processor Intel_Linux
features
A1553: requires bus access X_1553.HS_1553;
end Intel_Linux;
--
bus X_1553
features
A629: requires bus access
ARINC_629.HS_629;
end X_1553;
--
bus implementation X_1553.HS_1553
end X_1553.HS_1553;
--
bus ARINC_629
end ARINC_629;
--
bus implementation ARINC_629.HS_629
end ARINC_629.HS_629;

In te l_ L in u x

X _ 1 5 5 3 .H S _ 1 5 5 3

A R IN C _ 6 2 9 .H S _ 6 2 9

6.3.2 Properties

There are a number of predeclared properties that can be used to specify important bus
characteristics:

• transmission characteristics such as allowed connection and access protocols, message
sizes, transmission time, propagation delay

• hardware source language descriptions

• data movement time characteristics such as the time to move a byte or block of data and
any fixed data movement overhead time

Section 6: Execution Platform Components

48 CMU/SEI-2006-TN-011

6.3.3 Constraints

Table 6-6 summarizes the permitted elements of bus type and implementation
declarations.

Table 6-6: Summary of Permitted Bus Declaration Subclauses

Category Type Implementation

bus

Features
• requires bus access
Flow specifications: no
Properties yes

Subcomponents:
• None
Subprogram calls: no
Connections: no
Flows: no
Modes: yes
Properties yes

A bus component can only be a subcomponent of a system component. A summary of the
allowed subcomponent relationships and features is included on pages 117–119 in the
Appendix.

6.4 Device
Device abstractions represent entities that interface with the external environment of an
application system. Those devices often have complex behaviors. They may have internal
processors, memory, and software that are not explicitly modeled. Alternatively, they may
require driver software that is executed on an external processor. A device’s external driver
software may be considered part of a processor’s execution overhead, or it may be treated as
an explicitly declared thread with its own execution properties. Examples of devices
are sensors and actuators or standalone systems such as a Global Positioning System.

6.4.1 Textual and Graphical Representations

A device can interact in complex ways with other components. For example, a device
may have a physical connection to a processor via a bus as well as logical connections
through ports to application software components. As with all logical connections among
components residing on distinct execution platform elements, these logical connections must
be supported by (be bound to) physical connections.

Table 6-7 shows an excerpt from an AADL specification that describes a device
Roll_Rate_Sensor interacting through a bus with a processor Intel_RTOS. The
processor executes the device driver for the Roll_Rate_Sensor. The requirement for
bus access is specified in the type declaration for Roll_Rate_Sensor. Similarly, the
need for bus access is declared within the processor type declaration for
Intel_RTOS. Notice that the out data port declared on the roll rate sensor device
provides the rate data from the sensor. A device can be used to represent a more complex

Section 6: Execution Platform Components

CMU/SEI-2006-TN-011 49

physical element, such as an engine where the ports can represent the engine’s sensors and
actuators.

Table 6-7: A Sample Device Specification: Textual and Graphical Representation

processor Intel_RTOS
features
A1553: requires bus access
X_1553.HS_1553;
end Intel_RTOS;
--
device Roll_Rate_Sensor
features
A1553: requires bus access
X_1553.HS_1553;
raw_roll_rate: out data port;
end Roll_Rate_Sensor;
--
bus X_1553
end X_1553;
--
bus implementation X_1553.HS_1553
end X_1553.HS_1553; Intel_RTOS

X_1553.HS_1553

Roll_Rate_Sensor

Devices can be viewed from different perspectives. They are integral to the execution
environment, both in terms of the application computing system (software and execution
platform components) and the physical environment in which the application system exists.
Thus, a device can be viewed as

• a physical component that interfaces with the application software through ports (and
port groups), as shown in Figure 6-1

• part of the application system interacting with execution platform components and the
application system, as shown in Figure 6-2

• a unit in the environment that is accessed or controlled by the application system, as
shown in Figure 6-3

The complexity and nature of interactions of a device depend upon how it is included in
the architecture. If a device is included as part of the execution platform system, there are
numerous logical connections to the application system. If it is included as part of the
application system, there are physical connections via bus access across the system
hierarchy. In general, it is preferable to place the device declaration with the application
code, since the emphasis is on its interaction with the application and the number of
connections to the execution platform is then limited to the bus.

Section 6: Execution Platform Components

50 CMU/SEI-2006-TN-011

Application

Physical Hardware
Device

Bus
Processor

Figure 6-1: A Device as Part of the Physical Hardware

Processor
Application System

FM
Device
(Driver)

Execution Platform

Bus

Figure 6-2: A Device as Part of the Application System

Plane

Controlled Environment

Sensor

Actuator
Control System

AutoPilot

Figure 6-3: A Device as Part of the Controlled Environment

The data port, port group, and connections abstractions—along with their
graphical representations—depicted in Figure 6-1 through Figure 6-3 are discussed in Section
8: Component Interactions.

6.4.2 Properties

Device properties encompass the dual software and hardware character of a device.

• software-specific properties

- source code files
- source code language
- code size
- execution platform binding properties

• execution platform (hardware) properties, such as those specifying the files that
contain the hardware description language for the device and the language used for that
description

• properties for specification of the thread properties of the device software
executing on a processor, such as dispatch protocols and execution time-related
properties

Section 6: Execution Platform Components

CMU/SEI-2006-TN-011 51

6.4.3 Constraints

Table 6-8 summarizes the permitted elements of device type and implementation
declarations. A device component can only be a subcomponent of a system component. A
summary of the allowed subcomponent relationships and features is included on pages 117–
119 in the Appendix.

Table 6-8: Summary of Permitted Device Declaration Subclauses

Category Type Implementation

device

Features
• port
• port group
• server subprogram
• requires bus access
Flow specifications: yes
Properties yes

Subcomponents:
• none
Subprogram calls: no
Connections: no
Flows: yes
Modes: yes
Properties: yes

Section 7: System Structure and Instantiation

52 CMU/SEI-2006-TN-011

7 System Structure and Instantiation

This section presents the language abstractions for structuring and integrating AADL
elements into a complete representation of an application system that includes a system
component, component bindings, source code elements, and instantiation.

7.1 System Abstraction
The system abstraction represents a composite of software, execution platform, or system
components. System abstractions can be organized into a hierarchy that can represent
complex systems of systems as well as the integrated software and hardware of a dedicated
application system (e.g., flight navigation system or database server). Used early in the
modeling process to generically represent a component, system components can be formed
into a model that is transformed later—some system components being translated into
process components and contained components being translated into thread and
thread group components.

7.1.1 Textual and Graphical Representations

A system can consist of various combinations of software, execution platform, and system
components. For example, a system may consist only of software (i.e., process or data
components) or execution platform components. Thread and thread group components
cannot be subcomponents of a system, since they must be contained within a process or
a thread group.

The composition of a system implementation is declared through subcomponent
declarations. Table 7-1 provides textual and graphical representations of a system
implementation of the system type integrated_control. The details of the type
declaration are not included. The explicit subcomponent declarations are shown in the
system implementation declaration of
integrated_control.integrated_control_system. However, many of the
other subclauses are omitted. The supporting declarations are not shown (e.g., the process
type declaration for the process type controller). In the graphical portrayal of the
system implementation, the subcomponents of integrated_control_system
of the type integrated_control are shown.

Section 7: System Structure and Instantiation

CMU/SEI-2006-TN-011 53

Table 7-1: A Sample System Specification: Textual and Graphical Representation

system integrated_control
end integrated_control;
--
system implementation integrated_control.integrated_control_system
subcomponents
control_process: process controller.speed_control;
set_point_data: data set_points;
navigation_system: system core_system.navigation;
real_time_processor: processor rt_fast.rt_processor;
hs_memory: memory rt_memory.high_speed;
high_speed_bus: bus network_bus.HSbus;
end integrated_control.integrated_control_system;

c o n tr o l_
in p u t

c o n tr o l_
o u tp u t

s e t_ p o in t_ d a ta

c o n tro l_ th r e a d _ g r o u p

r e a l_ t im e
_ p ro c e s s o r

h s _ m e m o r y
h ig h _ s p e e d _ b u s

n a v ig a t io n _ s y s te m

in te g r a te d _ c o n tr o l_ s y s te m

c o n tro l_ p r o c e s s

Section 7: System Structure and Instantiation

54 CMU/SEI-2006-TN-011

7.1.2 Constraints

Table 7-2 summarizes the permitted elements of a system type and implementation
declarations. Notice that a system cannot contain a thread or thread group; they must
be contained in a process. A system can be a subcomponent only of another system
component. A summary of allowed subcomponent relationships and features is included on
pages 117–119 in the Appendix.

Table 7-2: Summary of Permitted System Declarations

Category Type Implementation

system

Features:
• server subprogram
• port
• port group
• provides data access
• provides bus access
• requires data access
• requires bus access
Flow specifications: yes
Properties yes

Subcomponents:
• data
• process
• processor
• memory
• bus
• device
• system
Subprogram calls: no
Connections: yes
Flows: yes
Modes: yes
Properties yes

7.2 System Instance
A system instance represents the runtime architecture of an operational physical system.
That physical system may be a stand-alone system or a system of systems. A system
instance consists of application software components and execution platform components.
Component type and component implementation declarations are architecture blueprints
that define the structure and connectivity of a physical system architecture. They must be
instantiated to create a complete system instance. A system instance that represents the
containment hierarchy of the physical system is created by instantiating a top-level system
implementation and then recursively instantiating the subcomponents and their
subcomponents.

Once instantiated, the application component instances can be bound to execution platform
components (i.e., each thread is bound to a processor; each source text, data
component, and port is bound to memory and each connection is bound to a bus if
necessary). There is no explicit textual representation for system instances. Instead,
system instances are created and stored as system instance models in XML. System
instance models can be operated on by analysis and generation tools.

In a fully specified system, the application components are modeled to the level of threads and
possibly refined to subprogram calls within threads. Similarly a fully specified
execution platform includes processors to execute application code, memory to store

Section 7: System Structure and Instantiation

CMU/SEI-2006-TN-011 55

application code and data, devices that represent the physical environment of the embedded
application, and buses that connect these components. Certain system analyses require fully
specified system models. For example, scheduling analysis cannot be performed until all the
application threads are specified and are bound to processors.

Early in the development process it is desirable to have partially specified system models and
be able to instantiate them for analysis. For example, we may represent an application
system as a collection of interacting subsystems without providing details of their
implementation. Subsystems are modeled as system components or process components.
We can instantiate this partial application system together with an execution platform
model into a partial system instance model. We can assign resource budgets in terms of
CPU cycles and memory requirements to the application subsystems and resource capacities
to the execution platform. Given this data we can analyze various bindings of application
components to the execution platform and ensure that the budgets do not exceed the capacity.
We can also add flow specifications to individual subsystem components and end-to-end
flows to the application system. Based on these flow specifications, flow analyses such as
an end-to-end response time analysis can be performed without a fully detailed system
model.16

7.3 Binding to Execution Platform Components
For a complete system specification (one that can be instantiated), software components
must be bound to appropriate execution platform components. For example, threads must
be bound to processing elements and processes must be bound to memory. Similarly,
interprocessor connections must be bound to buses, and subprogram calls must be
bound to their server subprogram. These bindings are defined through property
associations.

There are three categories of binding properties that provide support for declaring:

1. allowed bindings

2. actual bindings

3. identified available memory and processor resources

For example, there is an Allowed_Memory_Binding predeclared property that
identifies possible memory components for binding and an Actual_Memory_Binding
predeclared property that specifies the memory component to which code and data from
source text is bound. The Available_Memory_Binding property specifies the set of
contained memory components that are available for the binding to a system’s internal
components from outside the system.17

16 For more information on analysis, see AADL publications and presentations at www.aadl.info.
17 Allowed_Memory_Binding and Actual_Memory_Binding are predeclared properties in

the property set AADL_Properties that is part of every AADL specification [SAE 06a].

Section 8: Component Interactions

56 CMU/SEI-2006-TN-011

8 Component Interactions

Representations of the interactions among components are restricted to defined connections
established between interface elements. Connections establish one of the following
interactions:

• port connections (Sections 8.1 and 8.2): These are explicit relationships declared between
ports or between port groups that enable the directional exchange of data and
events among components.

• component access connections (Section 8.3): These are explicit declarations that enable
multiple components access to a common data or bus component.

• subprogram calls (Section 8.4): These are explicit declarations within component
implementations that enable synchronous call/return access to subprograms.

• parameter connections (Section 8.5): These are relationships among data elements
associated with subprogram calls.

Interface elements are declared within the features section of a component type
declaration. Paths of interaction (i.e., connections) between interface elements are declared
explicitly within component implementations.

8.1 Ports
A port represents a communication interface for the directional exchange of data,
events, or both (event data) between components. Ports are classified as

• data port: interfaces for typed state data transmission among components without
queuing
Data ports are represented by typed variables in source text. The structure of the
variable/array is defined by the data type [data classifier] on the ports.
Connections between data ports are either immediate or delayed.

• event port: interfaces for the communication of events raised by subprograms,
threads, processors, or devices that may be queued
Examples of event port use include: triggers for the dispatch of an aperiodic
thread, initiators of mode switches, and alarm communications. Events such as alarms
may be queued at the recipient, and the recipient may process the queue content. Event
ports are represented by variables within source text that are associated with runtime
service calls.

• event data port: interfaces for message transmission with queuing
These interfaces enable the queuing of the data associated with an event. An example

Section 8: Component Interactions

CMU/SEI-2006-TN-011 57

of event data port use is modeling message communication with queuing of
messages at the recipient. Message arrival may cause dispatch of the recipient and allow
the recipient to process one or more messages. These ports are represented by port
variables in source text that are associated with relevant runtime service calls.

8.1.1 Port Declarations

Ports are declared as features in component type declarations. Ports are directional. An
out port represents a component’s output and an in port represents a component’s input. An
in out port represents input and output to a component that maps to a single static variable.
An in out data port represents both an incoming and an outgoing port such that the
outgoing and incoming connections can be made to different components.

The graphical representations for data ports, event ports, and event data ports are summarized
in Figure 8-1.

out

in

in out

Event port

Event data port

Data port

Figure 8-1: Port Graphical Representations

Table 8-1 has an example textual specification and corresponding graphical representation
that includes port and port connection declarations. Within component type specifications,
appropriate ports declarations are grouped together in the features section. Supporting
data type definitions are included at the end of the table. Many of the other details of the
specification are not shown. For example, declarations of data types used in data port
declarations are not included, as in the declaration of the port c_data_out where the
declaration of the data type processed_data is not shown.

In addition to user-defined ports, there are implicitly declared ports for threads.18 For
example, Error is an implicitly declared out event data port for all threads and
may be declared as part of a connection involving a thread. In addition, there is an implicit
Complete out event port that, if connected, raises an event, signaling the
completion of a thread. Implicit ports can be used directly in connection declarations. They
are not included in a features subclause.

18 The predeclared ports for a thread are Dispatch, Complete, and Error [SAE 06a].

Section 8: Component Interactions

58 CMU/SEI-2006-TN-011

8.1.2 Port Connections

Connection declarations between ports are also shown in Table 8-1. A connection declaration
consists of

1. optional identifier (name)
2. colon (:)
3. port connection descriptor (e.g., data port)
4. source port
5. connection symbol (e.g., the symbol -> for an immediate connection)
6. destination port

The pattern for port connection textual declaration is shown in the box below:

name : [descriptor] [source port] [connection symbol] [destination port]

Graphically, connections are solid lines between the ports involved in the connection,
sometimes with adorned with double cross hatching. See Section 8.1.5 (Immediate and
Delayed Communications).

For example, in Table 8-1, the connection c_data_transfer is between the out data
port c_data_out of the thread input (written as input.c_data_out) and the
in data port c_data_in of the thread control_plus_output (written as
control_plus_output.c_data_in). The connections declaration brake_in:
event port brake -> input.brake_event; connects the in event port
brake of process implementation control.speed_control to the in
event port brake_event of the thread subcomponent input. A name for the
data port connection between control_plus_output.c_cmd_out and
throttle_cmd is not included in this example. The implicit event data port
Error is used in the connection error_connection. It is connected to the out event
data port Error_Signal but not declared explicitly as a feature in the originating
thread.

Table 8-1: Sample Declarations of Data, Event, and Event Data Ports

process control
features
speed: in data port raw_speed;
brake: in event port;
set_speed: in event data port raw_set_speed;
throttle_cmd: out data port command_data;
Error_Signal: out event data port;
end control;

thread control_in
features
speed_in_data: in data port raw_speed;
brake_event: in event port;

Section 8: Component Interactions

CMU/SEI-2006-TN-011 59

Table 8-1: Sample Declarations of Data, Event, and Event Data Ports (cont.)

set_speed_edata: in event data port raw_set_speed;
c_data_out: out data port processed_data;
end control_in;

thread control_out
features
c_data_in: in data port processed_data;

c_cmd_out: out data port command_data;
end control_out;

process implementation control.speed_control
subcomponents
input: thread control_in.input_processing_01;
control_plus_output: thread control_out.output_processing_01;
connections

speed_in: data port speed -> input.speed_in_data;
brake_in: event port brake -> input.brake_event;
set_speed_in: event data port set_speed -> input.set_speed_edata;
c_data_transfer: data port input.c_data_out ->
 control_plus_output.c_data_in;

data port control_plus_output.c_cmd_out -> throttle_cmd;
error_connection: event data port input.Error -> Error_Signal;
end control.speed_control;

thread implementation control_in.input_processing_01
end control_in.input_processing_01;

thread implementation control_out.output_processing_01
end control_out.output_processing_01;

data raw_speed
end raw_speed;

data raw_set_speed
end raw_set_speed;

data command_data
end command_data;

data processed_data
end processed_data;

control.speed_control

input control_
plus_output

speed throttle_cmd

brake

set_speed
Error

Error_Signal

c_data_out

c_data_in c_cmd_out

speed_in_data

brake_event

set_speed_edata

Section 8: Component Interactions

60 CMU/SEI-2006-TN-011

8.1.3 Connections in System Instance Models

A connection instance represents the actual flow of data and control between components of
a system instance model. In case of a fully specified system, this flow is a transfer
between two thread instances, a thread instance and a processor instance, or a
thread instance and a device instance. The data flow may be in either direction.
However, at least one thread must be included. In the AADL standard, connection
instances in a fully specified system model are called semantic connections.

In the case of a partially specified system, the system instance model is expanded through
the component hierarchy to the subcomponents for which no implementation detail is
provided, regardless of their component category. In this case, connection instances may be
between ports of system component instances or process component instances.
According to the AADL standard, those connection instances are not semantic connections,
but they are essential to certain analyses of partial system instance models.

Connection instances that are semantic connections are illustrated in Figure 8-2. In this
figure, data is communicated between two threads in different processes. The data
connection between the two threads is expressed by connection declarations that must follow
the component hierarchy. In other words, there is a connection declaration from the original
thread to its enclosing process, from that process to the second process, and from
that process to the contained destination thread. Note that threads cannot arbitrarily
communicate with other threads in the system. The enclosing process determines, through
the ports in its type declaration and the connection declarations to those ports, which data
from its threads should be passed on to threads in other processes.

In a system instance model, the sequence of data connection declarations from a thread
to its enclosing process, to the second process, and to the thread contained in the
second process results in a connection instance. If two threads are subcomponents
within the same process or thread group, the connection instance is represented by a
single connection declaration between those threads in the enclosing component
implementation. While there may be a series of port-to-port connections involved in a
data transfer (system instance connection) between two threads, data is transferred
directly from the sending thread to the receiving thread. From an application source
code perspective, the sending thread assigns a value to a variable/array and the receiving
thread receives that value in a corresponding variable/array.

Section 8: Component Interactions

CMU/SEI-2006-TN-011 61

Application System

read_thread

collect_data_process

scale_thread

scale_data_process

connection declarations

semantic connection

Figure 8-2: A Semantic Connection between Thread Instances

Figure 8-3 illustrates a connection instance in a partial system instance model. In this
model, the data collection process and the data scaling process have not been
detailed out. The data connection between the two processes results in a connection
instance in the system instance model. This connection instance is not considered a
semantic connection according to the AADL standard, but the connection instance can be
used in a fault propagation analysis or flow analysis of this partially specified system.

Application System

collect_data_process scale_data_process

connection declaration

connection instance
Figure 8-3: A Connection Instance in a Partially Specified System Instance Model

8.1.4 Port Communication Timing

The timing of system instance data communication via ports depends upon the type of
components involved (i.e., thread, device, or processor) and the nature of their
connections. Communication timing is expressed in terms of execution completion,
deadline, and dispatch times. For data port transfer out of threads, the data is ready for
transfer at the completion of the thread, regardless of dispatch or scheduling
characteristics. The timing of the delivery of the data to a receiving component is
established by the nature of the data connection between them—immediate or delayed.

For event and event data ports, a source thread executes a Raise_Event call.
This call results in the immediate transfer of control for an event port and the immediate
transfer of both control and data for an event data port.

Section 8: Component Interactions

62 CMU/SEI-2006-TN-011

8.1.5 Immediate and Delayed Communications

The type of connection between thread data ports establishes specific timing
semantics for data that is transferred between originating and terminating threads. Data port
connections can be immediate or delayed. This section presents the basic timing
semantics for these inter-thread connections. It does not address the potential impact of
bus speeds, communication protocols, or partitions on these connections.

For immediate connections, data transmission is initiated when the source thread
completes and enters the suspended state. The value delivered to the in data port of a
receiving thread is the value produced by the sending thread at its completion. For an
immediate connection to occur, the threads must share a common (simultaneous) dispatch.
However, the receiving thread’s execution is postponed until the sending thread has
completed its execution. This aspect can be seen in Figure 8-4, where the immediate
connection specifies that the thread control must execute after the thread
read_data, within every 50 ms period. In addition, the value that is received by the
thread control is the value output by the most recent execution of the thread
read_data.

read_data control

20Hz 20Hz

Timeline
Ti (20Hz) Ti+2 (20Hz)Ti+1 (20Hz)

read_data
control

Immediate connection
dictates execution order

read_data
control

read_data
control

Figure 8-4: An Immediate Connection

For the graphical timelines in Figure 8-4 through Figure 8-9, a horizontal bar above the
timeline that is labeled with a thread name represents the execution time of that thread.
The left edge represents the start and the right edge represents the termination of the
thread’s execution. A solid or segmented arrow between thread execution bars
represents a data transfer between threads. A segmented arrow represents a delayed (e.g.,
Figure 8-5) or a repeat transfer (e.g., Figure 8-6).

For the two threads illustrated in Figure 8-4, a partial textual specification is shown in Table
8-2. The connection immediate_C1 is declared as immediate using the single-headed
arrow symbol (->) between the out data port and in data port. Notice the
Period property association (50 ms) within each of the thread type declarations.

Section 8: Component Interactions

CMU/SEI-2006-TN-011 63

Table 8-2: AADL Specification of an Immediate Connection

thread read_data
features
in_data: in data port;
out_data: out data port;
properties
Period => 50 ms;
end read_data;
--
thread basic_control
features
in_data: in data port;
out_data: out data port;
properties
Period => 50 ms;
end basic_control;
--
process implementation control_speed.impl
subcomponents
read_data: thread read_data;
control: thread basic_control;
connections
immediate_C1: data port read_data.out_data -> control.in_data;
end control_speed.impl;

For a delayed port connection, the value from the sending thread is transmitted at its
deadline and is available to the receiving thread at its next dispatch. For delayed port
connections, the communicating threads do not need to share a common dispatch. In this
case, the data available to a receiving thread is that value produced at the most recent
deadline of the sending thread. If the deadline of the sending thread and the dispatch of
the receiving thread occur simultaneously, the transmission occurs at that instant. The
impact of a delayed connection can be seen in Figure 8-5, where the thread control
receives the value produced by the thread read_data in the previous 50 ms frame. A
shown in Figure 8-5, a delayed connection is symbolized graphically by double cross
hatching on the connection arrow between the ports.

For the two threads illustrated in Figure 8-5, a partial textual specification is shown in Table
8-3. This specification has some differences from the one in Table 8-2: the connection
delayed_C1 is declared as delayed using the double-headed arrow (->>) and the Period
property association is declared in a properties subclause within the process. This
association specifies that the value of 50 ms is the period of contained threads unless
overridden within an individual thread’s declaration.

Section 8: Component Interactions

64 CMU/SEI-2006-TN-011

read_data control

20Hz 20Hz

Timeline
Ti (20Hz) Ti+2 (20Hz)Ti+1 (20Hz)

Forces ‘control’ to receive
data from the previous frame.

read_data control read_data
control

read_data
control

Data available at
deadline of read_data.

Figure 8-5: A Delayed Connection

Table 8-3: AADL Specification of a Delayed Connection

Thread read_data
features
in_data: in data port;
out_data: out data port;
end read_data;
--
thread basic_control
features
in_data: in data port;
out_data: out data port;
end basic_control;
--
process implementation control_speed.impl
subcomponents
read_data: thread read_data;
control: thread basic_control;
connections
delayed_C1: data port read_data.out_data ->> control.in_data;
properties
Period => 50 ms;
end control_speed.impl;

8.1.6 Oversampling and Under-Sampling

For communication between different frequency periodic threads with simultaneous dispatch,
both delayed and immediate communications can be used to ensure a well-defined exchange.

Consider the example of two simultaneously dispatched threads read_data and control
shown in Figure 8-6 and Figure 8-7. In the case of a delayed connection, the value from
read_data is available at its deadline. It is received by the two executions of control
whose dispatch coincides with or follows that deadline (e.g., read_data may have a

Section 8: Component Interactions

CMU/SEI-2006-TN-011 65

preperiod deadline). Thus, the two executions of control occurring within an execution
frame of read_data receive the value produced in the preceding frame of read_data.

In contrast, consider the case of immediate connections as shown in Figure 8-7, the values
available for two sequential executions of control are the same, the value produced within
the 10 Hz execution frame of read_data. This result is accomplished by delaying the
execution of the first control within the frame until the completion of read_data.
Notice that this can only occur if both read_data and an execution of control can
successfully complete (i.e., meet deadline) within the execution frame of control.

read_data control

10Hz 20Hz

Timeline

read_data read_data

control control

Ti+1 (20Hz)

control

reads every value twice

control

data value from
previous (10Hz) frame

Preemption & concurrency
are possible.

Ti (20Hz)
Tj (10Hz)

Ti+2 (20Hz)
Tj+1 (10Hz)

Figure 8-6: Oversampling with Delayed Connections

read_data control

10Hz 20Hz

Timeline

read_data read_data
control control control

reads every value twice
Immediate connection
affects execution order.

same data value

Ti+1 (20Hz)Ti (20Hz)
Tj (10Hz)

Ti+2 (20Hz)
Tj+1 (10Hz)

Figure 8-7: Oversampling with Immediate Connections

Consider the situation where a periodic thread is sending to a simultaneously dispatched
higher frequency thread. For a delayed connection, as shown in Figure 8-8, the data
provided to an execution of control is the value produced by read_data that is
available at the simultaneous dispatch of the threads. That value is produced at the most
recent read_data deadline, which may coincide with the thread’s dispatch. In the case of
an immediate connection as shown in Figure 8-9, the value provided to the thread

Section 8: Component Interactions

66 CMU/SEI-2006-TN-011

control is the value produced by read_data at the end of its first execution after the
simultaneous dispatch, and the execution of control is delayed until read_data has
completed.

read_data control

20Hz 10Hz

Timeline

read_data

control control

read_data read_data read_data

Ti+1 (20Hz)Ti (20Hz)
Tj (10Hz)

Ti+2 (20Hz)
Tj+1 (10Hz) most recent data value

from previous (10Hz) frame

Figure 8-8: Under-Sampling with Delayed Connections

read_data control

20Hz 10Hz

Timeline

read_data

control control

read_data read_data read_data

Ti+1 (20Hz)Ti (20Hz)
Tj (10Hz)

Ti+2 (20Hz)
Tj+1 (10Hz)

Figure 8-9: Under-Sampling with Immediate Connections

8.1.7 Properties

A variety of predeclared port properties provide details on the interface represented by
the port, including properties relating to the

• source text for the port

• whether a connection is required for the port

• port binding characteristics

• entry points associated with event and event data ports

For example, Source_Name is used to specify the name of the port variable in the source
code. Required_Connection is used to indicate whether the component’s
implementation is aware of a port’s having a connection (i.e., the connection may be

Section 8: Component Interactions

CMU/SEI-2006-TN-011 67

optional) or whether the component assumes the connection to always be in place.19 Port-
specific execution time, deadline, and source code entrypoints can be specified for each port
to reflect that each may cause a different piece of code to be executed. Several properties
allow the queue characteristics of event and event data ports to be specified.

In addition, predeclared port connection properties allow the declaration of specific
connection protocols and binding properties relating to the connection. Binding
properties allow the declaration of actual and allowed binding as well as the
specification of restrictions on the co-location of software elements associated with the
connection.

8.1.8 Port and Port Connection Constraints

There are restrictions on the topology of port connections. An out data port can be
connected to (i.e., send data to) data ports of multiple components—a “fan-out” of data. An
in data port, however, is restricted to a single incoming connection. In other words,
because it does not support queuing, an in data port cannot have a “fan-in” from
different sources; the outputs from those sources would overwrite one another. If queuing of
data is desired, an event data port should be used. In contrast, event ports and event
data ports support both data fan-out and fan-in. Fan-in is supported because these ports
support queuing. Multiple inputs at an event or event data port enable the
specification of the sequencing of disparate events as well as the queuing of events.

While it is permissible to omit the explicit declaration of the data type for a data or event
data port, the explicit declaration allows checking of consistency of data type and size
for the connections made between ports. Thus, the connection from the out data port of
the thread read to the in data port of the thread scale in Figure 8-3 requires
that the data type declaration for each of these ports and all of the intervening ports must be
the same for a complete system specification. However, incomplete port specifications are
permitted. For example, it is acceptable for one end of a connection not to have a data type
declared while the other end does. Similarly, one end of a connection can have just a data
component type while the other end has a data implementation with the same type.

8.2 Port Groups
The port group abstraction represents a collection of ports or other port groups. The
content and structure of a port group are declared completely through a port group
type declaration. There is no implementation declaration. Port groups are declared in the
features section of component types and reference a port group type. They may be
incompletely specified by not referring to a port group type or by referring to a port
group type containing ports that themselves are not completely specified.

19 Source_Name and Required_Connection are in the predeclared property set

AADL_Properties that is part of every AADL specification [SAE 06a].

Section 8: Component Interactions

68 CMU/SEI-2006-TN-011

Port groups can be used to

• reduce the number of connection declarations

• simplify graphical presentations

• allow a single reference to multiple related ports, connections, and entities in a
specification

• group ports with common properties (e.g., all event ports)

• mix port types and directions

8.2.1 Port Groups and Port Group Type Declarations

A port group is defined in a type declaration that explicitly identifies the individual ports
and port groups that it comprises. Example port group declarations and their declaration
as features within a component type are shown in Table 8-4. As with other component
type declarations, properties of the port group can be declared and a port group
type can be extended and refined.

The declarations in the Table 8-4 are excerpts from a complete specification and include only
relevant declarations and portions of declarations needed to show what is required in
specifying a specific port group. In the tables, port group type declarations are
shown in the left column and example references to the type and supporting declarations are
shown in the right column.

Table 8-4: Sample Port Group with Mixed Port Types

port group type declaration port group reference
(with supporting declarations)

port group roll_set
features
roll_data: in data port;
roll_cmd: out data port c_form;
engage: in event port;
errors: port group error_set;
end roll_set;

data c_form
end c_form;

port group error_set
features
sensor_error: in data port;
range_error: out event port;
end error_set

process control
features
roll_01: port group roll_set;
end control;

A port group type can be declared as the inverse of another port group type. This
relationship is indicated by the reserved words inverse of and the name of a port
group type. The features of the inverted port group must be in the same order as in

Section 8: Component Interactions

CMU/SEI-2006-TN-011 69

the referenced port group but with the opposite directions. A port group type that is
named in an inverse of statement cannot itself contain an inverse of statement.
Thus, a chaining of inverses, such as B inverse of A and C inverse of B, is not permitted. An
example of the use of the key word inverse of is shown in Table 8-5.

Table 8-5: A Port Group Type Declaration and its Inverse

port group GPS_socket
features
 Wakeup: in event port;
 Observation: out data port position;
end GPS_socket;

port group GPS_plug
features
 WakeupEvent: out event port;
 ObservationData: in data port position;
inverse of GPS_socket
end GPS_plug;

Figure 8-10 contains graphical icons for port groups and their connections. The graphical
symbols of a port group represent the features declaration of the port group
within a component type declaration. Port groups can bundle different port types and
directions.

Figure 8-10: Graphical Representations of Port Groups

8.2.2 Port Group Connections

Connections can be made between port groups, individual ports, and the
individual ports within a port group. Within a component, elements of a port
group in its component type can be individually connected to ports of subcomponents.
However, elements of a port group of a subcomponent cannot be individually connected
to other subcomponents. In other words, grouping and pulling apart elements of a port

Port Group
(as a feature of a thread)

Port Group Connection
(between two port groups that
are each a feature of system)

Port Group Bundle
(mixed directions and ports)

Port group

Section 8: Component Interactions

70 CMU/SEI-2006-TN-011

group can occur when going up or down the component hierarchy, but not within the same
level of the component hierarchy.

Figure 8-11 shows a graphical representation of a port group identified as
mode_control_group and its inverse, with relevant excerpts from a corresponding
AADL specification for a simple cruise control system. The connection declaration between
the port groups is shown in Table 8-6 that includes excerpts from an AADL specification.

cc_process_subsystem

process_raw_data controller

port group mode_control_group_inverse
features

cc_on_in: in event port;
cc_off_in: in event port;
brake_on_in: in event port;

inverse of mode_control_group
end mode_control_group_inverse;

port group mode_control_group
features

cc_on_out01: out event port;
cc_off_out01: out event port;
brake_on_out01: out event port;

end mode_control_group;

Figure 8-11: Sample Port Group Connections

Table 8-6: Sample Port Group Connection Declarations

process implementation process_subsystem.cc_process_subsystem
…
subcomponents
process_raw_data: thread process_data.cc_process_raw_data;
controller: thread control.cc_control;
connections
d_to_c: port group process_raw_data.mc_out -> controller.mc_in;
…
end process_subsystem.cc_process_subsystem;
…
thread process_data
features
mc_out: port group mode_control_group;
end process_data;
…
thread control
features
mc_in: port group mode_control_group_inverse;
end control;

Port groups can be effective in grouping related data and connections. For example, the
individual outputs of multiple sensors (devices) within a sensor subsystem (grouped in a
system) can be bundled together into a single port group. In that instance, all of the

Section 8: Component Interactions

CMU/SEI-2006-TN-011 71

sensor data is transferred through a single connection declaration from the sensor subgroup to
a control processing system. The information provided by the ports within the port group
is distributed through separate connections to individual control processing subsystems.

8.2.3 Aggregate Data Ports

Time consistency in data transmission can be achieved using an aggregate data port
group. An aggregate data port group consists exclusively of data ports that have the
same direction (i.e., all out data ports) with an Aggregate_Data_Port property
value of true.20 For this specialized port group, data transmission from multiple ports is
time coordinated—that is, if data associated with the port group is produced by a set of
simultaneously dispatched periodic threads, the recipients of that data receive a consistent set
of values from the most recent dispatch or a consistent set of values from the previous
dispatch of the threads.

8.2.4 Properties

Predeclared port group properties can be used to establish a port group as an
aggregate data port and define port group memory binding characteristics. Port
group connections can have properties that reflect the properties of the ports that
compose the port group. For example, there is a Source_Text property that
specifies the source files associated with the port group and an
Allowed_Memory_Binding property that specifies the set of memory components to
which data and event data ports within the port group can be bound.

8.3 Subcomponent Access
Data and bus subcomponents are made accessible throughout a system through explicit
features declarations within type declarations of components. For data components, this
capability supports modeling of shared access to a common data area or static data. For bus
components, this access models the connectivity of execution platform components
through buses whose access they share.

The access declarations are

• provides: indicates that a component provides access to a data or bus component
contained within it

• requires: indicates that a component requires access to a data or bus component that
is external to it

20 Aggregate_Data_Port is a predeclared property for every AADL specification [SAE 06a].

Section 8: Component Interactions

72 CMU/SEI-2006-TN-011

8.3.1 Data Access Declarations

Examples of a data subcomponent access declaration are shown in Table 8-7. There is
an optional identifier for the declaration.

Table 8-7: Data Access Declarations

process control
features
cc_set_point_data: requires data access data_sets.set_points;
error_log_data: provides data access logs.error_logs;
end control;

data data_sets
end data_sets;

data implementation data_sets.set_points
end data_sets.set_points;

data logs
end logs;

data implementation logs.error_logs
end logs.error_logs;

8.3.2 Data Access Connections

The connections (paths) for subcomponent access are declared in connections
declarations within component implementations. The access connection specifies the path
from the component providing access to the component requiring access (i.e., from
provides to requires).

Table 8-8 presents an example of data access connections declarations. The lower
portion of Table 8-8 is a graphical representation of these data access dependencies. The
example shows some of the declarations for the system implementation
basic_control.auto_cc that are relevant to the data access relationships for the
system. The thread subcomponent cc_algorithm of the process cc_control
requires access to the local data subcomponent comm_error_log
(logs.error_logs). In addition, the thread subcomponent comm_errors requires
access to the data subcomponent comm_error_log (logs.error_logs) of the
process cc_error_monitor. This connection is a remote connection across address
spaces, where the process cc_control provides access to its data subcomponent.

Notice the concurrent access to the data subcomponent comm_error_log
(logs.error_logs) in the example. The predeclared property
Concurrency_Control_Protocol can be used to coordinate this access (e.g., to
ensure mutually exclusive access). Other predeclared properties for data subcomponent
access identify whether the required or provided access is read_only, write_only, or

Section 8: Component Interactions

CMU/SEI-2006-TN-011 73

read_write. A Required_Access property association must be the same as the
Provided_Access property of the component that is accessed.21

Table 8-8: Shared Access across a System Hierarchy
system implementation basic_control.auto_cc
subcomponents
cc_control: process control.cc_control;
cc_error_monitor: process monitor.error_monitor;
connections
a_01: data access cc_control.error_log_data ->
cc_error_monitor.error_data_in;
end basic_control.auto_cc;
--
process control
features
error_log_data: provides data access logs.error_logs
 {Provided_Access => access read_only;};
end control;

process implementation control.cc_control
subcomponents
comm_error_log: data logs.error_logs {Provided_Access =>
 read_write;};
cc_algorithm: thread algorithm.cc;
connections
data access comm_error_log -> error_log_data;
data access comm_error_log -> cc_algorithm.error_log_data;
end control.cc_control;

thread algorithm
features
error_log_data: requires data access logs.error_logs
 {Required_Access => access read_write;};
end algorithm;

thread implementation algorithm.cc
end algorithm.cc;

data logs
end logs;

data implementation logs.error_logs
end logs.error_logs;

process monitor
features
error_data_in: requires data access logs.error_logs
 {Required_Access => access read_only;};
end monitor;

21 The predeclared properties Concurrency_Control_Protocol, Required_Access, and

Provided_Access are included in the property set AADL_Properties. This property set
declaration is part of every AADL specification [SAE 06a].

Section 8: Component Interactions

74 CMU/SEI-2006-TN-011

Table 8-8: Shared Access across a System Hierarchy (cont.)

process implementation monitor.error_monitor
subcomponents
comm_errors: thread m_algorithm.errors;
end monitor.error_monitor;

thread m_algorithm
features
c_error_data: requires data access logs.error_logs
 {Required_Access => access read_only;};
end m_algorithm;

thread implementation m_algorithm.errors
end m_algorithm.errors;

cc_error_monitor

cc_control

comm_error_log

cc_algorithm

comm_errors

basic_control.auto_cc

requires data access to
comm_error_log

(logs.error_logs – read_write)

requires data access to
comm_error_log

(logs.error_logs – read_only)

provides data access to
comm_error_log
(logs.error_logs)

8.3.3 Bus Access and Bus Access Connections

In addition to access to data, access to buses is declared explicitly in AADL. Table 8-9 shows
an example of bus access for a simplified cruise control system that consists of a cruise
control unit (system component) and driver input, speed sensor, and throttle devices.
The additional execution hardware for the system consists of a processor that executes
the cruise control system application software and a bus connecting the hardware
components. The figure in the lower portion of Table 8-9 is a graphical representation for
required access features and connections to the bus declared in the text. It also
shows the data connections for the system. Some of the details of the subcomponent
declarations are not complete in the sample specifications.

Section 8: Component Interactions

CMU/SEI-2006-TN-011 75

Table 8-9: Basic Bus Access and Access Connection Declarations

system implementation cruise_control_system.impl
subcomponents
driver_input_unit: device driver_input_unit;
speed_sensor: device speed_sensor;
CCU: system CCU_system;
throttle_actuator: device throttle_actuator;
M555: processor M555;
CANBus: bus CANBus.impl;
connections
-- data port connections not included
-- bus access connections
bus_access_01: bus access CANBus -> driver_input_unit.bus_access;
bus_access_02: bus access CANBus -> speed_sensor.bus_access;
bus_access_03: bus access CANBus -> throttle_actuator.bus_access;
bus_access_04: bus access CANBus -> M555.bus_access;
end cruise_control_system.impl;
--

device driver_input_unit
features
set_speed: out data port;

bus_access: requires bus access CANBus.impl;
end driver_input_unit;
--
system cruise_control_system
end cruise_control_system;
--
bus CANBus
end CANBus;
--
bus implementation CANBus.impl
end CANBus.impl;
--
system CCU_system
end CCU_system;
--
device speed_sensor
features
bus_access: requires bus access CANBus.impl;
end speed_sensor;
--
device throttle_actuator
features
bus_access: requires bus access CANBus.impl;
end throttle_actuator;
--
processor M555
features
bus_access: requires bus access CANBus.impl;
end M555;

Section 8: Component Interactions

76 CMU/SEI-2006-TN-011

Table 8-9: Basic Bus Access and Access Connection Declarations (cont.)

throttle_
actuator

driver_input
_unit

CANBus

cruise_control_system.impl

M555
speed_
sensor

CCU

Table 8-10 illustrates how to model two subsystems with hardware components and bus
connections. Some of the specifications are not complete (e.g., type rather than
implementation classifiers are used in defining some of the components and
subcomponents). In the illustration, one subsystem is connected to the other by a bus
provided by the second subsystem. Specifically, the application system requires bus
access to the network system’s 1553 bus. The bus access, requires, provides,
and connections are shown both graphically (lower portion of Table 8-10) and as AADL
text declarations.

Table 8-10: Example Bus Access Connection Declarations

system containing_system
end containing_system;
--
system implementation containing_system.impl
subcomponents
network: system network;
application: system application;
connections
bus access network.network_bus -> application.network_bus;
end containing_system.impl;
--
system network
features
network_bus: provides bus access B_1553;
end network;
--
system implementation network.impl
subcomponents
B_1553: bus B_1553;
connections
C01: bus access B_1553 -> network_bus;
end network.impl;
--

Section 8: Component Interactions

CMU/SEI-2006-TN-011 77

Table 8-10: Example Bus Access Connection Declarations (cont.)

system application
features
network_bus: requires bus access B_1553;
end application;
--
system implementation application.impl
subcomponents
PC_processor: processor PC;
connections
bus access network_bus -> PC_processor.network_bus;
end application.impl;
--
processor PC
features
network_bus: requires bus access B_1553;
end PC;
--
bus B_1553
end b_1553;

B_1553

PC_processor

application

network

containing_system.impl

8.4 Subprogram Calls
Subprogram calls are declared through calls declarations within a thread or
subprogram implementation. The subprogram that is called must be declared
through a subprogram type declaration and possibly a subprogram
implementation declaration, as discussed in the Section 5.5.1 (Subprogram
Declarations).

In the current version of the AADL standard, subprograms are not declared as instances
through a subprogram subcomponent declaration. The need for such instances is inferred
from the calls and can take into account sharing of subprogram libraries across
processes. The specific subprogram called is declared through a property association of
the predeclared property Actual_Subprogram_Call. The example in Table 8-12
illustrates this principle.

Section 8: Component Interactions

78 CMU/SEI-2006-TN-011

8.4.1 Call Sequences

There may be a sequence of calls declared within a component implementation. An
example is shown in the partial specification of Table 8-11 where the calls sequence
two_calls involves a call to the subprogram implementations acquire.temp and
then adjust.level. The associated subprogram declarations are also shown. The
calls sequence is determined by the subprogram calls declaration order. In other
words, the calls order is linear. If more complex call orderings are desired, an annex
notation could provide specification of other orderings, such as a “branch” or “iteration.”
Alternatively, one can specify different calls sequences that are active under different
modes. For more details on the use of modes, see Section 9 (Modes).

Notice that subprograms may call other subprograms. This circumstance is shown in
Table 8-11 where the subprogram implementation adjust.level calls the
subprogram find.temp_values.

Graphically, subprogram calls are represented by subprogram symbols, arranged left
to right within a thread implementation or subprogram symbol. A call sequence
arrow may be included as shown in the figure in the lower potion of Table 8-11.

Table 8-11: Example Subprogram Calls

thread implementation control.thermal_control
--
calls
two_calls:{
 get_temp: subprogram acquire.temp;
 adjust_level: subprogram adjust.level;
 };
--
end control.thermal_control;

subprogram acquire
end acquire;

subprogram implementation acquire.temp
end acquire.temp;

subprogram adjust
end adjust;

subprogram implementation adjust.level
calls
 {
 find_scale_values: subprogram find.temp_values;
 };
end adjust.level;

subprogram find
end find;

subprogram implementation find.temp_values
end find.temp_values;

Section 8: Component Interactions

CMU/SEI-2006-TN-011 79

Table 8-11: Example Subprogram Calls (cont.)

adjust_level

call sequence arrow
(optional)

control.thermal_control

get_temp

8.4.2 Remote Calls

Remote client-server interactions can be modeled using server subprogram calls as
shown in the partial specification in Table 8-12. The property association
Actual_Subprogram_Call declares that the subprogram call call_server
within the thread calling_thread, which is a subcomponent of the process
client_process, is being made to the subprogram contained within the server
process (server_process). This is an example of a contained property association
that is discussed in more detail in Section 11.2.2 (Contained Property Associations).

Table 8-12: Client-Server Subprogram Example

system implementation client_server_sys.impl
subcomponents
client_process: process client_process.impl;
server_process: process server_process.impl;
properties
Actual_Subprogram_Call => reference server_process.
 server_thread.service
 applies to client_process.
 calling_thread.call_server;
end client_server_sys.impl;
--
process client_process
end client_process;
--
process implementation client_process.impl
subcomponents
calling_thread: thread calling.impl;
end client_process.impl;
--
thread calling
end calling;
--
thread implementation calling.impl
calls {
 call_server: subprogram service_it ;
 };
end calling.impl;

Section 8: Component Interactions

80 CMU/SEI-2006-TN-011

Table 8-12: Client-Server Subprogram Example (cont.)

process server_process
features
service: server subprogram service_it;
end server_process;
--
process implementation server_process.impl
subcomponents
server_thread: thread server_thread.impl;
end server_process.impl;
--
thread server_thread
features
service: server subprogram service_it;
end server_thread;
--
thread implementation server_thread.impl
end server_thread.impl;
--
subprogram service_it
end service_it;

calling_thread

client_process

server_thread

server_process

service

call_server

client_server_system.impl

server subprogram call binding:
Actual_Subprogram_Call =>

reference server_process.server_thread.service
applies to client_process.calling_thread.call_server;

8.4.3 Properties

Subprogram calls properties identify the allowed and actual server subprograms
involved in a remote server subprogram call. In addition, these properties can be
used to specify the allowed and actual binding of the calls to physical elements that support a
remote server subprogram call. If no values are assigned to these properties, the
subprogram call is a local call to a server subprogram.22

22 In the AADL standard, the subprogram calls of all threads must either be local calls or

be bound to a server subprogram whose thread is part of the same mode, in a completely
instantiable system [SAE 06a].

Section 8: Component Interactions

CMU/SEI-2006-TN-011 81

8.5 Data Exchange and Sharing in Subprograms
A subprogram can receive and provide data through a variety of mechanisms including

• parameter (passing by value)

• access (passing by reference)

• global/static (shared) data

These diverse and often implicit aspects of data that are followed in programming languages
can be modeled and explicitly documented in an AADL representation through parameters,
access features, and their associated connections.

8.5.1 Data Exchange by Value: Parameters and Connections

A parameter represents call and return data values passed into and out of a
subprogram. These exchanges by value are declared as typed data features in the
type declaration of a subprogram, similar to data port declarations. Parameter
connections are used to describe the flow of data into and out of a subprograms and
the data flow through a sequence of subprogram calls within a thread. These
connections can be useful in a comprehensive flow analysis when used in conjunction
with flows declarations. For more detail on the use of parameters in flow analysis, see
Section 10 (Flows).

Table 8-13 presents textual and graphical representations of the parameters and the
parameter connections associated with a calls sequence within a thread. In a
graphical representation

• parameters are represented as solid arrows (), like data ports

• parameter connections are shown as solid lines (▬) between parameters or
between a parameter and a port (on a containing thread of the subprogram
call)

• subprogram calls are represented by ovals () labeled with the call (e.g.,
scale) and called subprogram type

• calls sequence is indicated by an arrow with an open arrow head (→) (Alternatively, a
calls sequence can be specified by the ordering of the calls from the left to the
right.)

Notice that the in event data port in_data of the thread scale_data is
connected to the parameter in_parameter of the subprogram scale. Parameters
can be connected to in data port, out data port, and event data port.

Section 8: Component Interactions

82 CMU/SEI-2006-TN-011

Table 8-13: Example Parameter Connections

thread scale_data
features
in_data: in event data port;
out_data: out data port;
end scale_data;
--
thread implementation scale_data.impl
calls {
scale: subprogram scale;
edit: subprogram edit_range;
update: subprogram update_set;
 };
connections
parameter in_data -> scale.in_parameter;
parameter scale.interim_value -> edit.interim_value;
parameter edit.out_parameter -> update.io_parameter;
parameter update.io_parameter -> out_data;
end scale_data.impl;
--
subprogram scale
features
in_parameter: in parameter;
interim_value: out parameter;
end scale;
--
subprogram edit_range
features
interim_value: in parameter;
out_parameter: out parameter;
end edit_range;
--
subprogram update_set
features
io_parameter: in out parameter;
end update_set

scale edit update

call sequences

parameter connections

scale_data

8.5.2 Data Passing by Reference and Global Data

The flow of data into and out of a subprogram can involve references to data (e.g.,
pointer values) or access to common data values (i.e., global or static data), rather than

Section 8: Component Interactions

CMU/SEI-2006-TN-011 83

explicit data passing. These data reference mechanisms are described through data
requires/provides data access declarations in an AADL model.

For example, consider the annotated pseudocode and corresponding AADL textual
representation in Table 8-14. In the pseudocode, examples of subprogram calls with
data reference and the use of global data are shown. In the Passing by reference
section of pseudocode, the function scale modifies data (referenced with the pointer p1)
using the scale factor v1. In the second implementation of scale (the Global variable
section of Table 8-14), a parameter data value (the scale factor) is passed and a common
data element raw_data is scaled.

Within AADL, both of these options are represented with v1 as a parameter, whereas the
pointer p1 and the common data raw_data are represented as a data access feature of
the subprogram scale. The thread processing has a call to the subprogram
scale. A corresponding AADL representation for the Global variable pseudocode explicitly
shows the thread receiving the data value for v1 through the in data port scalar
and using that value in the subprogram call, as indicated by the parameter connection
VC1 in the thread. In contrast, the pointer reference to the data to be scaled is represented
as a data access in the subprogram type declaration for scale. The explicit
reference to raw_data in the subprogram scale is the requires statement in the
thread type declaration. The AADL specification allows an implementation using
either option shown in pseudocode.

Table 8-14: Examples of Passing by Reference and Global Data

Pseudocode AADL Representation

Passing by reference:
……
scale (v1, p1)
v1 is a real that is
the scale factor.
p1 is a pointer to a
data set ‘raw_data’
that is to be scaled.
…
processing that calls
the subprogram:
…
call scale (v1, p1);
….

subprogram scale
features
v1: in parameter real;
p1: requires data access raw_data;
end scale;
--
data raw_data
end raw_data;
--
data real
end real;
--
thread processing
features
scalar: in data port real;
p1: requires data access raw_data;
end processing;
--

Section 8: Component Interactions

84 CMU/SEI-2006-TN-011

Table 8-14: Examples of Passing by Reference and Global Data (cont.)

Global variable:
…
variable and
processing
definitions:
….
real: raw_data;
…
scale(v1)
 {
 x :=
raw_data;
 }
…
processing that
calls the
subprogram:
…
call scale(v1);
….

thread implementation processing.impl
calls {
 scale_it: subprogram scale;
 };
connections
VC1: parameter scalar -> scale_it.v1;
PC1: data access p1 -> scale_it.p1;
end processing.impl;
--
process data_management
features
scalar: in data port real;
end data_management;
--
process implementation data_management.impl
subcomponents
r_data: data raw_data;
data_processing: thread processing.impl;
connections
C1: data port scalar -> data_processing.scalar;
C2: data access r_data -> data_processing.p1;
end data_management.impl;

8.5.3 Method Calls in AADL

Calls to object methods can be represented in AADL as calls to subprogram
features of a data component. Consider the pseudocode in Table 8-15 where the method
errorTotal of the class ErrorLog returns an integer value that is the total number of
errors currently in the log. The corresponding AADL representation involves the declaration
of an enclosing process implementation that establishes instances of the thread
monitor and the data component ErrorData, as well as the required data access
of the thread monitor to ErrorData. The implementation of the thread
monitor involves the call sequence to subprograms errorTotal and reset. The
integer type return value for errorTotal is represented as the out parameter total.
The data access connections are shown graphically in the figure of Table 8-15 and
indicate the subprogram and thread access to ErrorData.

Table 8-15: Methods Calls on an Object

Object-Oriented Pseudocode AADL Representation

class ErrorLog {
 int errorTotal () {
…
 }
 void reset() {
….
 }
…..

process implementation
maintenance.control
subcomponents
monitor: thread monitor.errors;
ErrorData: data ErrorLog;
connections
C1: data access ErrorData ->
monitor.log_access;
end maintenance.control;

Section 8: Component Interactions

CMU/SEI-2006-TN-011 85

Table 8-15: Methods Calls on an Object (cont.)

public static void main()
{
…
ErrorLog stabilizer = new
ErrorLog();
int errors;
errors =
stabilizer.errorTotal();
stabilizer.reset();
...
 }

--
thread monitor
features
log_access: requires data access
ErrorLog;
end monitor;
--
thread implementation monitor.errors
calls {
errors: subprogram ErrorLog.errorTotal;
reset_it: subprogram ErrorLog.reset;
 };
Connections
 Data access log_access ->
reset_it.this;
 Data access log_access -> errors.this;
end monitor.errors;
--
data ErrorLog
features
errorTotal: subprogram errorTotal;
reset: subprogram reset;
end ErrorLog;
--
subprogram errorTotal
features
 this: requires data access ErrorLog;
 total: out parameter
 BaseTypes::integer;
end errorTotal;
--
subprogram reset
features
 this: requires data access ErrorLog;
end reset;

errors reset_it

monitor

errorTotal

reset

ErrorData

maintenance.control

this:

log_access:

this:

Section 9: Modes

86 CMU/SEI-2006-TN-011

9 Modes

A modes abstraction is an explicitly defined configuration of contained components,
connections, and property value associations. Modes represent alternative
operational states of a system or component. For example, modes for a cruise control system
may be {initialize, disengaged, engaged}, where each of these modes may
involve different sets of processes, executing threads, or active connections (e.g., in the
initialization mode there are no connections to sensors).

Modes may specify different calls sequences to be used in a thread or subprogram.
Modes also may represent different logical states of any component, such as a thread or
subprogram, for which different property values apply. For example, under different
modes a thread may have different execution times to represent an algorithm that can
execute with different levels of precision. Modes may also represent different hardware
configurations such as processors that are active at any one time.

9.1 Modal Specifications
Modes are represented as states within a state machine abstraction. Each distinct
configuration of a component is identified as one mode (state) within the modal state
machine abstraction for the component. The configuration that defines each mode and the
events that cause the transitions in the behavior of the component must be specified. Each
modal state machine must have at least two modes, one of which must be declared as the
initial mode for the component.

Modes can be used to represent alternative system configurations in a variety of ways. They
can establish

• alternative configurations of active components and connections and the transitions
among these configurations

• variable call sequences within a thread

• mode-specific properties for software or hardware components

9.1.1 Modal Configurations of Subcomponents and Connections

Table 9-1 presents both textual and graphical representations of modes transition
specifications for a simplified controller thread within a cruise control system. In this
example, mode transitions are triggered by external events. Only the relevant ports are shown
in the type declaration for the thread control. Neither type nor implementation
declarations are complete. The graphic shows the mode transition view for the thread.

Section 9: Modes

CMU/SEI-2006-TN-011 87

There are two modes, idle and controlling, and three event ports in this example.
The idle mode is the initial mode. The event brought into the thread by event
port cc_engage results in a mode transition to the controlling mode (the thread
configuration that provides the functionality to maintain a set speed). The event carried
through the event port cc_resume_e1 also results in a switch to the controlling
mode using the previous value of the speed setting. Event port cc_brake results in an
exiting of the controlling mode to the idle mode.

Table 9-1: Sample Graphical and Textual Specifications for Modes

thread control
features
cc_engage : in event port;
cc_resume_e1 : in event port;
cc_brake: in event port;
end control;

thread implementation control.cc_control
modes
idle : initial mode;
controlling : mode;
idle -[cc_engage, cc_resume_e1]-> controlling;
controlling -[cc_brake]-> idle;
end control.cc_control;

cc_resume_e1
cc_brake

cc_engage

control.cc_control

idle

controlling

The example in Table 9-2 shows a multimode process where internal events result in mode
changes of a process. In the textual specification for the process
control_algorithms.impl, the modes section defines the two operational modes of
ground and flight and the transitions between them. The transitions are triggered by
out event ports from the thread controller that is a subcomponent of the
process implemenation control_algorithms.impl. The specification for the
process implementation includes in modes clauses that define the subcomponents
and connections active in each mode.

Section 9: Modes

88 CMU/SEI-2006-TN-011

In the upper right portion of the figure in Table 9-2, a graphic shows the modes and their
transitions that are triggered by the events from the controller thread. In that figure,
the flight mode configuration is shown in black and the ground mode is shown in gray.
This distinction illustrates that the ground_algorithms thread and its
connections are not part of the flight mode.

Table 9-2: Modes Example

process control_algorithms
features
status_data: in data port;
aircraft_data: in data port;
command: out data port;
end control_algorithms;
--
process implementation control_algorithms.impl
subcomponents
controller: thread controller;
ground_algorithms: thread ground_algorithms in modes (ground);
flight_algorithms: thread flight_algorithms in modes (flight);
connections
C1: data port aircraft_data -> ground_algorithms.aircraft_data in
modes (ground);
C2: data port aircraft_data -> flight_algorithms.aircraft_data in
modes (flight);
C3: data port ground_algorithms.command_data -> command in modes
(ground);
C4: data port flight_algorithms.command_data -> command in modes
(flight);
modes
ground: initial mode;
flight: mode;
ground -[controller.switch_to_flight]-> flight;
flight -[controller.switch_to_ground]-> ground;
end control_algorithms.impl;
--
thread controller
features
status_data: in data port;
switch_to_ground: out event port;
switch_to_flight: out event port;
end controller;
--
thread ground_algorithms
features
aircraft_data: in data port;
command_data: out data port;
end ground_algorithms;
--
thread flight_algorithms
features
aircraft_data: in data port;
command_data: out data port;
end flight_algorithms;

Section 9: Modes

CMU/SEI-2006-TN-011 89

Table 9-2: Modes Example (cont.)

controller

flight_
algorithms

ground_
algorithms

flight

ground

control_algorithms

9.1.2 Modal Configurations of Call Sequences

Alternative calls sequences can be specified using modes. The example in Table 9-3
shows a monitor thread that checks software and hardware and reports anomalies. The
thread employs a sequence of calls to subprograms when the thread is in the
nominal mode. When an error is detected, an error_condition is signaled through
the event port error_event. This signal results in a mode switch and changes the
subprogram calls sequence of the thread.

Table 9-3: Mode-Dependent Call Sequences

thread monitor
features
error_event: in event port;
repaired: in event port;
end monitor;
--
thread implementation monitor.impl
calls
 nominal_sequence: {
 call_cksw: subprogram check_sw;
 call_ckhw: subprogram check_hw;
 call_report: subprogram report;
 } in modes (nominal);
 error_sequence: {
 call_alarm: subprogram alarm;
 call_diag: subprogram diagnose;
 callreport: subprogram report;
 } in modes (error_condition);
modes
nominal: initial mode;
error_condition: mode;
nominal -[error_event]-> error_condition;
error_condition -[repaired]-> nominal;
end monitor.impl;

Section 9: Modes

90 CMU/SEI-2006-TN-011

9.1.3 Mode-Specific Properties

Property values assignments can be mode-dependent. These mode-specific property
associations can be used to define alternative characteristics and behavior for components.
For example, consider the partial specification in Table 9-4 that has a modified version of the
process implementation for control_algorithms.impl shown in Table 9-2.
In this example, the controller thread has a different execution time for the ground
mode than for the flight mode.

Table 9-4: Mode-Specific Component Property Associations

process implementation control_algorithms.impl
subcomponents
controller: thread controller {Compute_Execution_Time => 2 ms..5ms
in modes (ground);
Compute_Execution_Time => 3 ms..7ms in modes (flight);};
ground_algorithms: thread ground_algorithms in modes (ground);
flight_algorithms: thread flight_algorithms in modes (flight);
--
end control_algorithms.impl;

Section 10: Flows

CMU/SEI-2006-TN-011 91

10 Flows

AADL flows specification capabilities enable the detailed description and analysis of an
abstract information path through a system. A complete path for an abstract information
flow—an end-to-end flow implementation—begins at a source component and terminates
at a sink component. The specification of an end-to-end flow involves the declaration of the
elements of the flow (sources, sinks, and paths) and explicit implementation
declarations that describe the details of a complete path through the system.

A source component of a flow is characterized by the feature (e.g., port, port group, or
parameter) through which the flow emerges from the component. Similarly, a sink
component of a flow is characterized by the feature through which the flow enters the
component and terminates. Details of a flow path are described by identifying the entry
and exit features of each intermediary component and subcomponent involved in the flow.

10.1 Flow Declarations
Flows are directional. To specify a complete flow, declarations in component types and
implementations are required. For a component type, flows declarations designate a

• source: a feature of a component

• sink: a feature of a component

• flow path: a flow through a component from one feature to another

Table 10-1 shows a partial specification for a simplified cruise control system with flow
source, flow sink, and flow path declarations within component type declarations.
Notice that the flow path brake_flow through the system component
cruise_control has an in event data port as its origin and an out data
port as its termination feature. The lower portion of the table includes a graphical
representation of the declarations.

Table 10-1: Flow Declarations within a Component Type Declaration

device brake_pedal
features
 brake_event: out event data port float_type;
flows
 Flow1: flow source brake_event;
end brake_pedal;
--
system cruise_control
features
 brake_event: in event data port;

Section 10: Flows

92 CMU/SEI-2006-TN-011

Table 10-1: Flow Declarations within a Component Type Declaration (cont.)
 throttle_setting: out data port float_type;
flows
 brake_flow: flow path brake_event -> throttle_setting ;
end cruise_control;
--

device throttle_actuator
features
 throttle_setting: in data port float_type;
flows
 Flow1: flow sink throttle_setting;
end throttle_actuator;

cruise_control throttle_
actuator

brake_
pedal

flow source

flow path

flow sink

10.2 Flow Paths
Within a component implementation, flow declarations define the details of

• flow paths through a component

• end-to-end flows within the component

10.2.1 Flow Path through a Component

A flow path through a component consists of alternating sequences of paths through and
connections among subcomponents within the component. This path begins and ends at
features of the component type and is a realization of the corresponding flow path
declared in the component’s type declaration. Table 10-2 shows the flows
implementation declarations through the component cruise_control.impl for the
flow path brake_flow declared in the type declaration cruise_control of Table
10-1. It also shows a graphical representation of the flow path.

The flows implementation originates at the brake_event event data port
and proceeds through to the data port throttle_setting. The flow involves the
connections C1, C3, and C5 within the component implementation
cruise_control.impl, as well as the paths through the subcomponents of that
implementation. Notice that the nature of the data within the flow changes and
involves event data ports as well as data ports.

Section 10: Flows

CMU/SEI-2006-TN-011 93

Table 10-2: Flow Implementation Declarations through a Component

system implementation cruise_control.impl
subcomponents
data_in: process interface;
control_laws: process control;
connections
C1: event data port brake_event -> data_in.brake_event;
C3: data port data_in.out_port -> control_laws.in_port;
C5: data port control_laws.out_port -> throttle_setting;
flows
brake_flow: flow path brake_event -> C1 -> data_in.interface_flow1 ->
 C3 -> control_laws.control_flow1 -> C5 ->
throttle_setting;
end cruise_control.impl;
--
process interface
features
brake_event: in event data port ;
out_port: out data port float_type;
flows
interface_flow1: flow path brake_event -> out_port;
end interface;
--
process control
features
in_port: in data port float_type;
out_port: out data port float_type;
flows
control_flow1: flow path in_port -> out_port;
end control;

control_laws

cruise_control

data_inC1 C5C3brake_event throttle_setting

connections

flow path
interface_flow1 flow path

control_flow1

10.2.2 End-to-End Flow within a Component

An end-to-end flow within a component involves the declaration of a path from a flow
source to a flow sink within the component. The partial specification in Table 10-3
illustrates this type of declaration: an end-to-end flow is defined between the source
Flow1 in the device component brake_pedal and the sink Flow1 in the device
component throttle_actuator.

Section 10: Flows

94 CMU/SEI-2006-TN-011

Table 10-3: An End-to-End Flow

system implementation complete.impl
subcomponents
brake_pedal: device brake_pedal;
cruise_control: system cruise_control;
throttle_actuator: device throttle_actuator;
connections
C1: event data port brake_pedal.brake_event ->
cruise_control.brake_event;
C2: data port cruise_control.throttle_setting ->
throttle_actuator.throttle_setting;
flows
brake_flow: end to end flow brake_pedal.Flow1 -> C1 ->
cruise_control.brake_flow -> C2 -> throttle_actuator.Flow1;
end complete.impl;
--

device brake_pedal
features
brake_event: out event data port;
flows
Flow1: flow source brake_event;
end brake_pedal;
--
system cruise_control
features
brake_event: in event data port;
throttle_setting: out data port float_type;
flows
brake_flow: flow path brake_event -> throttle_setting;
end cruise_control;
--
device throttle_actuator
features
throttle_setting: in data port float_type;
flows
Flow1: flow sink throttle_setting;
end throttle_actuator;
--
data float_type
end float_type;

C2C1
brake_
pedal

cruise_control throttle_
actuator

flow sink Flow1flow source Flow1

flow path brake_flow

Section 11: Properties

CMU/SEI-2006-TN-011 95

11 Properties

Properties provide descriptive information about

• components

• subcomponents

• features

• connections

• flows

• modes

• subprogram calls

A property has a name, type, and an associated value. Properties can be assigned
values through property association declarations.

There are built-in property types and predeclared properties in the AADL standard.
Collectively, these properties and property types encompass common attributes for
the elements of the language. For example, a predeclared property of a port is
Required_Connection, which is of type aadlboolean and has a value of true or
false.23 Its predeclared (default) value is true. However, a property association can assign
the value false, allowing the port to be unconnected. A summary of AADL built-in
property types is included on page 122 in the Appendix.

In addition to providing predeclared properties and built-in property types, AADL
also permits the defining of new properties and property types. For example, to
define a new property (e.g., Priority) for a thread, a user would declare a
property name, type, and association of the new property. The property type declared
for a new property may be a built-in type (e.g., aadlinteger), or a new type can be
declared using a property type declaration.

11.1 Property Declarations
The declarations relating to properties are listed below.

• property association (Section 11.2): assigns a value or list of values to a named
property

23 Required_Connection is included in the predeclared property set named

AADL_Properties that is part of every AADL specification [SAE 06a].

Section 11: Properties

96 CMU/SEI-2006-TN-011

• property set (Section 11.3): defines a named collection of property types, names, and
constants

• Property type (Section 11.4) defines a property type and specifies the set of
acceptable values for properties of that type.

• Property name (Section11.5) defines a property by declaring a name, identifying a
type for the property, and applying it to a category of element within the specification
(i.e., mode, port group, flow, port, server subprogram, or connection).

• Property constant (Section 11.6) defines a name for a property value that can be
referenced in property expressions wherever the value itself is permissible.

Property name, property type, and property constant declarations must be contained within a
property set declaration.

11.2 Assigning Property Values
A property can be assigned a value or a list of values through a property association
declaration. Property values can be associated with properties directly within individual
component declarations, through an inherited value or an explicit contained property
association referencing elements within a hierarchal component. In addition, property
associations can be declared as being mode- or platform-binding specific.

11.2.1 Basic Property Associations

Property associations can be included within the properties section of component
type or implementation declarations or within declarations for subcomponents,
features, connections, flows, modes, and subprogram calls and their
refinements.

Sample component property association declarations are shown in Table 11-1 where an
implementation speed_data of the thread type data_processing is declared
with associations for two standard properties. The Period property is assigned a
single value of 100 ms. The Compute_Execution_Time assigned value is a range. In
addition, the in data port declaration sensor_data includes a property association
that declares the port need not be connected, and the thread subcomponent declaration
for data_processing includes a property association declaring the initialization
execution time range for the thread (1 ms .. 2 ms).

Table 11-1: Basic Property Association Declarations

thread data_processing
features
sensor_data: in data port {Required_Connection => false;};
end data_processing;
--
thread implementation data_processing.speed_data

Section 11: Properties

CMU/SEI-2006-TN-011 97

Table 11–1: Basic Property Association Declarations (cont.)

properties
 Period => 100 ms;
 Compute_Execution_Time => 5 ms .. 10 ms;
end data_processing.speed_data;
--
process implementation control.impl
subcomponents
data_processing: thread data_processing.speed_data
{Initialize_Execution_Time => 1 ms .. 2 ms;};
end control.impl;

Access property associations are used to detail the character of subcomponent access,
both requires and provides. Table 11-2 shows two access property associations,
where the process control requires read_only access to set point data
data_sets.set_points and provides read_write access to its internal error
logs. This is a modification of an example from Table 8-7.

Table 11-2: Sample Access Property Associations

process control
features
cc_set_point_data: requires data access data_sets.set_points
 {Required_Access => access read_only;};
error_log_data: provides data access logs.error_logs
 {Provided_Access => access
read_write;};
end control;

11.2.2 Contained Property Associations

Property associations for individual components have been shown in earlier examples
(e.g., Table 11-1). These declarations assign values for instances of the component. However,
explicit property associations may be omitted for a number of the elements of an
individual component. In these cases, values can be assigned through contained property
association declarations or inherited from declarations higher in the component containment
hierarchy.

A contained property association can be used to assign a property value to
subcomponents, features, flows, connections, or modes defined within a
component. A value can be assigned to an element that is deeply nested within the
component. In addition, with contained property associations, configuration parameters
for a system can be defined at a single point (e.g., at the highest point possible in the
component hierarchy). In that way, the parameters provide a centralized set of properties
and values for elements of a model that can readily be identified, adjusted, and reviewed.

An explicit contained property association is declared using an applies to clause that
specifically identifies an element within the component. The identification path to the
element consists of a dot-separated sequence of zero or more subcomponent identifiers

Section 11: Properties

98 CMU/SEI-2006-TN-011

followed by the identifier of the subcomponents, features, flows, connections,
or modes identifier to which the property association applies. Consider the partial
specification in Table 11-3 that shows the relevant type and implementation declarations
for a simplified cruise control system. The property associations within the system
implementation declaration for cc_complete.impl are property associations for
the execution time for the compute entry point of a contained thread
control_algorithm and the required connection value for a data port of the
contained thread adjust.

Table 11-3 shows two contained property associations within the system
implementation cruise_control.impl. In the first association, the computation
time for the compute entry point of the subcomponent thread control_algorithm is
assigned the range of 2 ms.. 5 ms. The thread control_algorithm is contained
within the process control_laws that is a subcomponent of the system
cruise_control. In the second association, the Required_Connection property
is assigned the value false for the out data port of the contained thread adjust.

Table 11-3: Contained Property Associations

system cc_complete
properties
Period => 20ms;
end cc_complete;
--
system implementation cc_complete.impl
subcomponents
brake_pedal: device brake_pedal;
cruise_control: system cruise_control.impl;
throttle_actuator: device throttle_actuator;
connections
C1: event data port brake_pedal.brake_event ->
cruise_control.brake_event;
C2: data port cruise_control.throttle_setting ->
throttle_actuator.throttle_setting;
properties
Compute_Execution_Time => 2 ms.. 5 ms applies to
 cruise_control.control_laws.control_algorithm;

Required_Connection => false applies to
 cruise_control.control_laws.adjust.out_port;
end cc_complete.impl;
--
system implementation cruise_control.impl
subcomponents
data_in: process interface;
control_laws: process control.impl;
connections
C1: event data port brake_event -> data_in.brake_event;
C3: data port data_in.out_port -> control_laws.in_port;
C5: data port control_laws.out_port -> throttle_setting;
end cruise_control.impl;
--
process control

Section 11: Properties

CMU/SEI-2006-TN-011 99

Table 11–3: Contained Property Associations (cont.)

features
in_port: in data port ;
out_port: out data port ;
end control;
--
process implementation control.impl
subcomponents
adjust: thread adjust_sensor_value.impl;
control_algorithm: thread algorithm.impl;
end control.impl;
--
thread adjust_sensor_value
features
in_port: in data port;
out_port: out data port;
end adjust_sensor_value;
--
thread implementation adjust_sensor_value.impl
end adjust_sensor_value.impl;
--
thread algorithm
features
in_port: in data port;
out_port: out data port;
end algorithm;
--
thread implementation algorithm.impl
end algorithm.impl;

cruise_control

data_in

throttle_
actuator

brake_
pedal

control_laws

control_
algorithm

Required_Connection => false

adjust

cc_complete.impl

Period => 20 ms
Compute_Execution_Time => 2 ms..5ms

out_port

Period => 20 ms

Section 11: Properties

100 CMU/SEI-2006-TN-011

Contained property associations are required when a property value involves a reference
to another part of a model. For example, the binding property of a thread must refer
to the processor to which it is bound. However, that reference is represented as a path
relative to the location at which the property association is specified. Thus, the
property association must be declared as contained property association attached to a
model component that is the common parent of the component being referenced and the
component to which the property value belongs.

An example of a contained property association across a component hierarchy is shown in
Figure 11-1 for the property Allowed_Processor_Binding. The property
association is included in the specification for the system component Avionics_sys and
declares that the thread observe can be bound to the processor linux1.

guidance: process

Avionics_SW: system Avionics_platform: system

linux1: processor pentium
control: process

compute: threadobserve: thread Avionics_bus: bus

Avionics_sys: system

Allowed_Processor_Binding =>
reference Avionics_platform.linux1

applies to Avionics_SW.guidance.observe

Figure 11-1: Contained Property: Allowed_Processor_Binding

11.2.3 Inherited Property Associations

There is an implicit form of a property association that can be declared for contained
components. This form involves properties defined with the inherit reserved word.
For these properties, a property association declaration within a component is
assigned to any subcomponent to which the property applies. For example, a Period
property association within a process declaration applies to all of the threads contained
within it, unless an individual thread property association declaration assigns a
different value to the Period. An example Period property declaration within a
system type declaration is shown in Table 11-3. A graphical representation is shown in the
lower portion of that table. See Section 11.5 for more information.

One should be cautious in using this implicit property assignment for subcomponents. An
inadvertent omission of a specific assignment for a contained component is not readily
detectable and may result in an incorrect property value assignment. In the example shown in
Table 11-3, Period for the thread adjust defaults to an execution time of 20 ms. If
the intention had been to have a Period of 10 ms, there would have to be an explicit
declaration for the Period of the adjust subcomponent.

Section 11: Properties

CMU/SEI-2006-TN-011 101

11.2.4 Mode or Binding Specific Property Associations

Property associations can be specialized to specific modes or bindings by declaring this
specialization in the property association. For example, the computation time and period
property associations from Table 11-3 are declared for a specific processor binding
in Table 11-4. Thus, alternative thread execution times and other processor-dependent
properties can be declared based upon processor bindings through the in
binding declaration. In Table 11-4, the Required_Connection property
association is specialized to the initialize mode in the system implementation
declaration cc_complete.impl.

Table 11-4: In Binding and In Mode Property Associations

system cc_complete
properties
Period => 20 ms in binding (Intel);
end cc_complete;
--
system implementation cc_complete.impl
subcomponents
brake_pedal: device brake_pedal;
cruise_control: system cruise_control.impl;
throttle_actuator: device throttle_actuator;
Intel: processor Intel.impl;
connections
C1: event data port brake_pedal.brake_event ->
cruise_control.brake_event;
C2: data port cruise_control.throttle_setting ->
throttle_actuator.throttle_setting;
modes
initialize: initial mode;
nominal: mode;
properties
Compute_Execution_Time => 2 ms.. 5ms applies to
cruise_control.control_laws.control_algorithm in binding (Intel);
Compute_Execution_Time => 3 ms.. 7ms applies to
cruise_control.control_laws.control_algorithm in binding (AMD);
Required_Connection => false applies to
 cruise_control.control_laws.adjust.out_port in modes (initialize);
end cc_complete.impl;
--
processor Intel
end Intel;
--
processor implementation Intel.impl
end Intel.impl;

Section 11: Properties

102 CMU/SEI-2006-TN-011

11.2.5 Property Values

The values that are assigned to properties can take a variety of forms:

• individual values associated with a basic built-in type like aadlboolean,
aadlstring, aadlinteger, or aadlreal

• a range of values, as shown in Table 11-4 for execution times

• values with or without units (e.g., Period)

• an enumeration value set (e.g., the Required_Access property)

• values that include model elements as well as explicit component classifiers

• individual values or lists of values

The property type reference allows a property value to refer to a model element
according to the containment hierarchy. For example, in Figure 11-1 the
Allowed_Processor_Binding declaration references a specific processor in the
system hierarchy. The properties of type classifier allow component classifiers
to be used as property values. In Table 11-5, the first property association for the
property Allowed_Processor_Binding_Class restricts the binding to
processors of type PowerPC. The classifier value can be a component
implementation or a list of classifier references, as shown in the second
property association for the property Allowed_Processor_Binding_Class in
the lower part of Table 11-5.

Table 11-5: Classifier Property Types

Allowed_Processor_Binding_Class => processor PowerPC;
--
processor PowerPC
end PowerPC;
--
Allowed_Processor_Binding_Class => (processor PowerPC.G4, processor
PowerPC.G5);
-- where PowerPC.G4 and PowerPC.G5 are processor implementations of
-- of the processor type PowerPC

Property value assignments can be indirect and used to centralize the declarations of system
parameters. For example, the property associations in Table 11-6 use the keyword value
to assign values to the Deadline and Period properties of the thread
algorithm.impl. In the property set timing, the property HiRate is defined
as a constant of the type Time with a value of 5 ms. Period is assigned the value of
HiRate, and the Deadline is assigned the value of Period. Thus, a change in all of
these assignments can be accomplished simply by changing the value of HiRate.

Section 11: Properties

CMU/SEI-2006-TN-011 103

Table 11-6: Property Associations with Value

thread implementation algorithm.impl
properties
Deadline => value (Period);
Period => value (timing::HiRate);
end algorithm.impl;
--
property set timing is
HiRate: constant Time => 5 ms;
end timing;

Built-in property types are summarized on page 122 in the Appendix. Details on declaring
additional property types are discussed in Section 11.4.

11.3 Defining New Properties
A property set is a named collection of property type, property name, and property constant
declarations. A named property set can be used to augment a general specification or
defined as part of an AADL annex.

Table 11-7 shows the form and content of a sample property set declaration
set_of_faults and includes examples of property name, property type, and property
constant declarations. The property named comm_error_status is defined as a
property of type aadlboolean (true or false) that applies to system and
device components. A property type Speed_Range is defined as a range of real
values from 0.0 mph..150.0 mph. The constant Maximum_Faults is defined as
the integer value 3.

For more details on

• property type declaration: see Section 11.4

• property name declaration: see Section 11.5

• property constant declaration: see Section 11.6

Section 11: Properties

104 CMU/SEI-2006-TN-011

Table 11-7: Sample Property Set Declarations

system implementation data_processing.accelerometer_data
properties
 set_of_faults::comm_error_status => true;
end data_processing.accelerometer_data;

property set set_of_faults is

-- An example property name declaration
comm_error_status: aadlboolean applies to (system, device);
-- An example property type declaration
Speed_Range : type range of aadlreal 0.0 mph..150.0 mph units (mph);
-- An example property constant declaration
Maximum_Faults : constant aadlinteger => 3;

end set_of_faults;

11.4 Property Type Declarations
A property type declaration defines a property type by associating an identifier with it and
establishing the set of legal values for a property of that type. The declaration consists of

1. the desired identifier for the property type

2. a colon (:)

3. the reserved word type

4. an explicit type definition

5. a terminating semicolon (;)

The pattern for a property type declaration is shown in the box below:

identifier: type property type definition;

A property type definition may be an AADL built-in property type, a specialized type
explicitly defined within the declaration, or a reference to previously defined property type.

In the examples shown in Table 11-8, the property type bit_error is defined as an
aadlboolean property type. The predefined aadlboolean property type has two legal
values, true and false. The property types fault_category and
fault_condition are defined as enumeration types. An enumeration property
type defines a specific set of identifiers as its legal values.

Type declarations can be more complex than simple base types. For example, the type
number_of_components is declared in the property set more_types as an
aadlinteger that ranges over the value 0 .. 25. The property boat_length is
declared as a type of aadlreal with the units of feet that ranges over the values of 7.5

Section 11: Properties

CMU/SEI-2006-TN-011 105

.. 150.0 units (feet). The property voltage_ranges is a type of
aadlreal that is a range of values that can span 0.0 .. 5.3 units (volts).

Table 11-8: Sample Property Type Declarations

property set set_of_faults is
bit_error: type aadlboolean;
fault_category: type enumeration (benign, tolerated, catastrophic);
fault_condition: type enumeration (okay, error, failed);
time_delay: type aadlreal units (seconds) ;
end set_of_faults;

property set more_types is
number_of_components: type aadlinteger 0 .. 25;
boat_length : type aadlreal 7.5 .. 150.0 units (feet);
voltage_ranges : type range of aadlreal 0.0 .. 5.3 units (volts);
end more_types;

11.5 Property Name Declarations
A property name declaration defines a property by declaring a name, identifying a type for
the property, and applying the property to a category of element within the specification (i.e.,
component, mode, port group, flow, port, server subprogram, or connection). A property
name declaration consists of

1. desired identifier for the property name

2. colon (:)

3. neither, either, or both of the reserved words (access or inherit)

4. explicit type identifier

5. reserved words (applies to)

6. property owner category or the reserved word (all)

7. terminating semicolon (;)

The pattern for a property name declaration is shown in the box below:

name : [access inherit property type applies to (property owner category);

A property owner category can be a component (e.g., system, thread, device), mode, port
group, flow, port (event or data), server subprogram, parameter, or connections (port group,
event port, data port, access, or parameter).

Example property name declarations within a property set set_of_names are shown
in Table 11-9. Property name declarations can include the access and inherit options. A
property declared with the reserved word inherit indicates that a value is inherited
from a containing component, if a property value cannot be determined for a component.

Section 11: Properties

106 CMU/SEI-2006-TN-011

This inheritance can be seen in the declaration for the property critical_unit that is
declared as inherit and as type aadlboolean and applies to all component categories.
A property declared with the reserved word access is associated with access to a
subcomponent rather than to the data component itself. The property queue_access is
declared as a true-false access property for a data component. This can be used to
restrict required access to a data queue. The property
required_sensor_array_size is declared as type array that is declared within the
property set set_of_types that is shown in the lower portion of Table 11-9.
Similarly, the property dangerous_voltages is declared with a type
voltage_ranges that is declared in the property set more_types found in Table
11-8.

Table 11-9: Sample Property Name Declarations

property set set_of_names is
critical_unit: inherit aadlboolean applies to (all);
queue_access: access aadlboolean applies to (data);
required_sensor_array_size: inherit set_of_types::array applies to
(system, process, thread);
dangerous_voltages: more_types::voltage_ranges => 5.1 .. 5.3 volts
applies to (processor);
end set_of_names;

property set set_of_types is
array: type enumeration (single, double, triplex);
end set_of_types;

11.6 Property Constant Declarations
Property constants are property values that are known by a symbolic name. Property
constants are provided in the predeclared property sets and can be defined in named property
sets. They can be referenced in property expressions by name wherever the value itself is
permissible.

Here are the basic declaration forms for a property constant declaration:

identifier: constant (type) => property value

identifier: constant list of (type) => property values

In the forms shown above

• Identifier is the name that can be used as a value in property associations.

• Entry (type) is a built-in type or a type declared in a property set.

• Property value or values must be of the type included in the constant declaration.

Section 11: Properties

CMU/SEI-2006-TN-011 107

Some sample declarations are shown in Table 11-10, where, for the property set
limits_set,

• Max_Threads is defined as an integer value of 256.

• Minimum_value is defined as a real value of 5.0.

• Default_Fault_State is defined as a constant of the type fault_condition
with the value of okay.

The type fault_condition, mentioned in Table 11-10, is defined in the package
set_of_faults, as shown in Table 11-8.

Table 11-10: Sample Property Constant Declarations

property set limits_set is
Max_Threads : constant aadlinteger => 256 ;
Minimum_value: constant aadlreal => 5.0;
Default_Fault_State: constant set_of_faults::fault_condition =>
okay;
end limits_set

Section 12: Organizing a Specification

108 CMU/SEI-2006-TN-011

12 Organizing a Specification

This section presents language constructs that can be used to organize an AADL specification
by grouping like elements using packages or design patterns.

12.1 Packages
A package is a named grouping of declarations and property associations that can be
used to organize a specification. Packages establish distinct namespaces. However, they do
not define an architectural hierarchy or design structure and cannot be declared inside other
packages.

A package is divided into public and private segments. Declarations in the public
segment are visible outside the package, whereas declarations in the private segment
are visible only within the package. To reference an element in the public segment from
outside a package, preface the element’s identifier with the package name. In Table 12-1
for example, a process type compress_display_data contained in the public
segment of the package display_dynamics_set would be referenced from outside
the package as display_dynamics_set::compress_display_data.

Also in Table 12-1, the specification for the system display_management references
the compress_display_data process declared in the package
display_dynamics_set. The data component new_format declared in the
private segment of the package cannot be accessed from outside. However, the data
component display_data can be, since it is declared in the public segment of the
package.

Section 12: Organizing a Specification

CMU/SEI-2006-TN-011 109

Table 12-1: Example Package Declaration

package display_dynamics_set
-- Elements accessible from outside the package are listed following
-- the key word public
public
process compress_display_data
features
display_data_input: in data port display_data;
formatted_data: out data port;
data_error: out event port;
end compress_display_data;

data display_data
end display_data;
-- Elements accessible only inside the package are listed following
-- the key word private
private
data new_format
end new_format;
end display_dynamics_set;

-- The subcomponent declaration below references a process in
-- display_dynamics_set
system implementation display_management.impl
subcomponents
compress_data: process display_dynamics_set::compress_display_data;
….
end display_management.impl;

A package name can include multiple identifiers separated by a double colon (::). Thus, a
package name like “primary_control_system::roll_axis::control_components” is permitted.
This naming flexibility can be useful for packages that have been developed independently
and have been assigned the same name. For example, consider two engineering teams
working on a project, team red and team blue. Each team develops a package with the name
“sensor_control.” These packages can be renamed “team_red::sensor_control” and
“team_blue::sensor_control”.24 This would establish separate namespaces for each package
and allow references to components with the same name within each package. That is,
“team_red::sensor_control::controller” would reference a different declaration than
“team_blue::sensor_control::controller.” In addition, this flexibility can be used to associate
packages logically. For example, two packages “roll_control” and “yaw_control” can be
associated by renaming them “aircraft::roll_control” and “aircraft::yaw_control.”

Packages can be used to organize layers of a design. For example, a package can be
defined for a flight manager subsystem using constituent component subsystems, packages

24 The AADL standard states that “A defining package name must be unique in the global namespace.

This means that the first identifier in a package name must be unique in the global namespace.
Succeeding identifiers in the package name must be unique within the scope of the previous
identifier” [SAE 06a].

Section 12: Organizing a Specification

110 CMU/SEI-2006-TN-011

that contain generic (common) descriptions, or packages containing only data types (e.g., a
data dictionary). This concept is shown in the partial specification and packages of Table
12-2 where the Flight_Manager type declaration and declarations within the package
avionics_subsystems reference components defined in separate packages.

In particular, in the portion of Table 12-2 labeled , the Flight_Manager component
type declaration extends the Flight_Manager system type declared in the
avionics_subsystems package. In the section labeled , the data type
avionics_data::raw_data, declared in the package avionics_data in the
section labeled , is used in the avionics_subsystem package. And, in table section

, the GPS subcomponent is an instance of the implementation GPS.impl from the
avionics_sensor package. The comment lines (-- ……) indicate that other
declarations required for a complete system specification are not shown.

Table 12-2: Example Design Organization Using Packages

system Flight_Manager
extends avionics_subsystems::Flight_Manager
end Flight_Manager ;
--
system implementation Flight_Manager.common
 subcomponents
 NSP : process avionics_subsystems::NavigationSensorProcessing;
 GPS : device avionics_sensors::GPS.mil;
-- ………
end Flight_Manager.common;

package avionics_subsystems
public
 system Flight_Manager
 features
input_data: in data port avionics_data:: raw_data;
output_data: out data port avionics_data:: processed_data;
 end Flight_Manager ;
--
process NavigationSensorProcessing
end NavigationSensorProcessing;
-- ……
end avionics_subsystems ;

package avionics_sensors
public
 device GPS
 end GPS;
 --
 device implementation GPS.mil
 end GPS.mil;
--………
end avionics_sensors;

Section 12: Organizing a Specification

CMU/SEI-2006-TN-011 111

Table 12-2: Design Organization Using Packages (cont.)

package avionics_data
public
--
data raw_data
end raw_data;
--
data processed_data
end processed_data;
--

end avionics_data;

12.2 Design Patterns
A collection of specifications can be defined that form a set of extensible design patterns.
Using AADL extension and refinement capabilities, these patterns can be used to develop
specific application models.

12.2.1 Type Extensions

Elements of a design pattern set can involve core type declarations whose features are
only partially defined. These core types as well as their descendents can be repeatedly
extended, defining more specific types through feature refinements (refined to), as
shown in Table 12-3. In that example, the core type one_dimensional_control is
extended to form two specific types: (1) roll_control and (2) pitch_control. In
these extensions, the partially defined in port and out port are refined to include
specific data types. For the type declaration for roll_control, another input data port
is added.

In general, new features can be added; partially defined features, completed; and
property associations, added or modified. In the example in Table 12-3, the
Required_Connection property value is changed in the roll_control extension.25
In the pitch_control extension, the Source_Name property association is added.
The refinement options for type extension declarations are summarized on page 124 in the
Appendix.

25 The default value for the predeclared property Required_Connection is true. However, it is

declared explicitly as true in this example to demonstrate the refinement of property associations.

Section 12: Organizing a Specification

112 CMU/SEI-2006-TN-011

Table 12-3: Example Type Extension

process one_dimensional_control
features
commanded_value: in data port;
actuator_command: out data port {Required_Connection => true;};
end one_dimensional_control;

process roll_control extends one_dimensional_control
features
commanded_value: refined to in data port roll_cmd_data;
actuator_command: refined to out data port aileron_cmd_data
 {Required_Connection =>
false;};
cross_coupling_state: in data port coupling_data;
end roll_control;
process pitch_control extends one_dimensional_control
features
commanded_value: refined to in data port pitch_cmd_data
 {Source_Name => "commanded_pitch_file";};
actuator_command: refined to out data port elevator_cmd_data;
end pitch_control;

12.2.2 Refinements within Implementations

In an implementation declaration, the refines type subclause can be used to add or
modify feature property associations of an implementation’s type. For example, consider
the server subprogram features for the thread type reader shown graphically
and as AADL text in Table 12-4. There are two thread implementations, one for
reading temperature (reader.temp) and one for reading pressure (reader.pressure).
Each modifies the computation execution time value and adds a property association that
defines a value for the subprogram’s compute deadline. Note that including the name of the
feature being refined (in this example a subprogram) in the refined to statement is
optional. In the example, the subprogram read_data is included within the refined
to declaration for the thread implementation reader.temp but is not included in
the refined to declaration for the thread implementation
reader.pressure.

Section 12: Organizing a Specification

CMU/SEI-2006-TN-011 113

Table 12-4: Example Refines Type Implementation Subclauses

thread reader
features
read_it: server subprogram read_data {Compute_Execution_Time => 2
ms ..5 ms;};
end reader;

thread implementation reader.temp
refines type
read_it: refined to server subprogram read_data
{Compute_Execution_Time => 2 ms .. 4 ms; Compute_Deadline => 5 ms;
};
end reader.temp;

thread implementation reader.pressure
refines type
read_it: refined to server subprogram {Compute_Execution_Time => 2
ms .. 4 ms;
 Compute_Deadline => 5 ms; };
end reader.pressure;

reader.temp

read_it

reader.pressure

read_it

reader
read_it

implements implements

12.2.3 Implementation Extensions

Implementations can extend other implementations, modifying the underlying
implementations and adding characteristics to them. Individual implementations can be
extended multiple times, and extensions themselves can be extended. Implementation
extensions can be integrated with type extension declarations to create an interrelated set of
component types and implementations.

Table 12-5 shows example implementation extension declarations with accompanying
type extension declarations for a flight control system. The type extension for
flight_control_system adds an additional in data port
sensor_set_redundant. Relationships among the declarations are shown graphically
following the textual AADL specification. The refinement options for implementation
extension declarations are summarized on page 125 in the Appendix.

Section 12: Organizing a Specification

114 CMU/SEI-2006-TN-011

Table 12-5: Example Implementation Extensions

system flight_control_system
features
sensor_set: in data port;
end flight_control_system;

system flight_control_system_redundant extends
 flight_control_system
features
sensor_set_redundant: in data port;
end flight_control_system_redundant;

system implementation flight_control_system.basic
end flight_control_system.basic;

system implementation flight_control_system.UAV extends
 flight_control_system.basic
end flight_control_system.UAV;

system implementation flight_control_system_redundant.R_UAV extends
flight_control_system.UAV
end flight_control_system_redundant.R_UAV;

Flight Control
System

Flight Control
System – Redundant

Flight Control
System.basic

extends

extends extendsFlight Control
System.UAV

Flight Control
System.R_UAV

implementsimplements

type

implementation

Section 12: Organizing a Specification

CMU/SEI-2006-TN-011 115

12.2.4 Example Design Patterns

In this section, the extension and refinement capabilities of the AADL are used to define a
family of N-way Voting Lane components. Each N-way component constitutes a lane within
a redundant composite of N-lanes and receives output data and system status opinions from
the other lanes. Figure 12-1 shows a three-way lane system component.

output_of_other_01

output_of_other_02

output_data

error_vote

input_data

vote_of_others

three-way

Figure 12-1: Three-way Voting Lane Component

The family of N-way Lane components depicted in Figure 12-2 is built upon extensions and
refinements of generic type-implementation pairs. The core pair is a two-way voting
generic type two-way and a generic implementation of that type two-way.g. The generic
two-way voting type and implementation are extended to create a three-way voting
generic type-implementation pair; the generic three-way voting type and
implementation are extended to create a four-way voting generic type-
implementation pair.

extends

type

implementation

two-way

extends

three-way four-way

two-way.g three-way.g four-way.g

implements implements implements

Generic type-
implementation pair.

Figure 12-2: Generic N-way Voting Lanes Type-Implementation Pairs

Generic type-implementation pairs can be extensions along a well-defined aspect of
the design. In this example of N-way lane components, the aspect is the number of redundant
lanes (voting ways) for the system. Generic implementations consist of general subclause
declarations that can readily be refined in subsequent implementation extensions. In
cascading generic implementations, partially defined subcomponents, calls,

Section 12: Organizing a Specification

116 CMU/SEI-2006-TN-011

connections, flows, and modes are added. As appropriate, property associations
are modified and added.

In cascading generic type declarations, features are partially defined, and basic
property associations are declared. Generic type declarations consist of the following
elements:

• partially defined features that can be completed in the refinements of a specialized
extends type declarations

• basic flow declarations that can be used throughout the family with modifications only to
the flow declaration property associations

• general property associations that characterize a component

In creating the family of type-implementation pairs illustrated in Figure 12-2, for
instance, the two-way generic type is extended to create a three-way type by adding
features that are partially defined rather than complete (e.g., data ports without data
classifiers to handle the additional inputs from other lanes). The three-way generic
implementation results from the extension of the two-way generic implementation.
In this implementation extension, subcomponents, connections, modes, and
other elements are added. Generic declarations should be sufficiently general to allow
refinement by subsequent “voting” implementation extensions. The extension and
refinement capabilities for types and implementations are summarized on pages 124–125 in
the Appendix.

A specific realization of an aspect (e.g., a three-way system) is defined by an extension of the
associated type-implementation pair, as shown in Figure 12-3. In the specific type
extensions (extends), features are completed, features and flows are added, and
relevant property associations are modified or added.

These declarations result in specialized realizations of the generic type. The specific
implementation extensions (such as the three-way implementation generated from
the three-way.g implementation in Figure 12-3) refine the general pattern of their
associated generic implementations, providing all of the details required for instantiation. In
the extension subcomponents definitions are completed; and calls, connections,
flows, and modes are added.

three-way_refthree-way

three-way.g

implements

three-way_ref.impl

Example extension of a generic type-
implementation pair to create a

specialized implementation.

Figure 12-3: Specialized Extension and Refinement

Appendix

CMU/SEI-2006-TN-011 117

Appendix

Component-Subcomponent Relationships
Table 13-1 summarizes the permitted component–subcomponent relationships for each of the
component abstractions in the AADL.

Table 13-1: Allowed Component-Subcomponent Relationships

Category
Group

Component
Category

Permitted
Subcomponents

Permitted
Subcomponent of

process
thread
data
thread group

system

thread data process
thread group

data data

process
thread
data
thread group
system

thread group
data
thread
thread group

process
thread group

Software

subprogram None allowed None
processor memory system

memory memory
processor
memory
system

bus None allowed system

Execution
Platform

device None allowed system

Composite system

process
data
processor
memory
bus
device
system

system

Appendix

118 CMU/SEI-2006-TN-011

Allowed Features
Table 13-2 and Table 13-3 summarize the allowed features for each of the component
abstractions in the AADL.

Table 13-2: Allowed Features for Components

Category
Group

Component
Category Allowed Features

process

• server subprogram
• port/port group
• provides data access
• requires data access

thread

• server subprogram
• port/port group
• provides data access
• requires data access

data • subprogram
• provides data access

thread group

• server subprogram
• port/port group
• provides data access
• requires data access

Software

subprogram

• out event port
• out event data port
• port group (event only)
• requires data access
• parameter

processor
• server subprogram
• port/port group
• requires bus access

memory requires bus access

bus requires bus access

Execution
Platform

device
port/port group
• server subprogram
• requires bus access

Composite system

• server subprogram
• port/port group
• provides data access
• provides bus access
• requires data access
• requires bus access

Appendix

CMU/SEI-2006-TN-011 119

Table 13-3: Features and Allowed Components

Feature Allowed Feature of Component
or Component Category

all port types

• system
• process
• thread
• thread group
• processor
• device

port
port group

• event port
• event data port
• port group (events only)

subprogram (component)

server

• system
• process
• thread
• thread group
• processor
• device

subprogram

subprogram (data) data

provides data

• system
• process
• thread
• thread group
• data

requires data

• system
• process
• thread
• thread group
• subprogram (component)

provides bus system

access

requires bus • system
• processor
• memory
• bus
• device

parameter subprogram (component)

Appendix

120 CMU/SEI-2006-TN-011

Constraints Summary
Table 13-4 contains a summary of the legality rules for AADL components from Version 1.0
of the standard.

Table 13-4: Constraints/Restrictions for Components

Component
Category Type Implementation

data

Features:
• subprogram
• provides data access
Flow specifications: no
Properties yes

Subcomponents:
• data
Subprogram calls: no
Connections: access
Flows: no
Modes: yes
Properties yes

subprogram

Features:
• out event port
• out event data port
• port group
• requires data access
• parameter
Flow specifications: yes
Properties yes

Subcomponents:
• none
Subprogram calls: yes
Connections: yes
Flows: yes
Modes: yes
Properties yes

thread

Features:
• server subprogram
• port
• provides data access
• requires data access
Flow specifications: yes
Properties yes

Subcomponents:
• data
Subprogram calls: yes
Connections: yes
Flows: yes
Modes: yes
Properties yes

thread group

Features:
• server subprogram
• port
• provides data access
• requires data access
Flow specifications: yes
Properties yes

Subcomponents:
• data
• thread
• thread group
Subprogram calls: no
Connections: yes
Flows: yes
Modes: yes
Properties yes

process

Features:
• server subprogram
• port
• provides data access
• requires data access
Flow specifications: yes
Properties yes

Subcomponents:
• data
• thread
• thread group
Subprogram calls: no
Connections: yes
Flows: yes
Modes: yes
Properties yes

Appendix

CMU/SEI-2006-TN-011 121

Table 13-4: Constraints/Restrictions for Components (cont.)

Component
Category Type Implementation

processor

Features:
• server subprogram
• port/port group
• requires bus access
Flow specifications: yes
Properties yes

Subcomponents:
• memory
Subprogram calls: no
Connections: no
Flows: yes
Modes: yes
Properties: yes

memory

Features
• requires bus access
Flow specifications: no
Properties yes

Subcomponents:
• memory
Subprogram calls: no
Connections: no
Flows: no
Modes: yes
Properties yes

bus

Features
• requires bus access
Flow specifications: no
Properties yes

Subcomponents:
• none
Subprogram calls: no
Connections: no
Flows: no
Modes: yes
Properties yes

device

Features
• port/port group
• server subprogram
• requires bus access
Flow specifications: yes
Properties yes

Subcomponents:
• none
Subprogram calls: no
Connections: no
Flows: yes
Modes: yes
Properties yes

system

Features:
• server subprogram
• port/port group
• provides data access
• provides bus access
• requires data access
• requires bus access
Flow specifications: yes
Properties yes

Subcomponents:
• data
• process
• processor
• memory
• bus
• device
• system
Subprogram calls: no
Connections: yes
Flows: yes
Modes: yes
Properties yes

Appendix

122 CMU/SEI-2006-TN-011

 Built-in Property Types
Table 13-5 summarizes the AADL standard built-in property types.

Table 13-5: AADL Built-in Property Types

Property Type Definition

aadlboolean Two values, true or false

aadlstring All legal strings of the AADL

enumeration An explicitly listed set of enumeration identifiers as
the set of legal values

units An explicitly listed set of measurement unit identifiers
as the set of legal values

aadlreal A real value or a real value and its measurement unit

aadlinteger An integer value or an integer value and its
measurement unit

range
Closed intervals of numbers indicating that a
property of this type has a value that is itself a range
term and specifies the number type of values in the
range term

classifier
Subset of syntactically legal component classifier
references whose category matches one of
component categories in the specified list

reference

Subset of syntactically legal references to those
components, whose category matches one of
component categories in the specified list, or to
connections or to server subprogram features;
indicated by the reserved word reference

Appendix

CMU/SEI-2006-TN-011 123

AADL Reserved Words

Table 13-6 lists the AADL reserved words. Reserved words are case insensitive.

Table 13-6: AADL Reserved Words

aadlboolean end modes reference

aadlinteger enumeration none refined

aadlreal event not refines

aadlstring extends of requires

access false or server

all features out set

and flow package sink

annex flows parameter source

applies group path subcomponents

binding implementation port subprogram

bus In private system

calls inherit process thread

classifier initial processor to

connections inverse properties true

constant Is property type

data list provides units

delta memory public value

device mode range

Appendix

124 CMU/SEI-2006-TN-011

Refinements within Type Extensions
Table 13-7 summarizes the refinement capabilities within type extension declarations.

Table 13-7: Type Extensions and Associated Refinements

Refinements within Type Extensions

Subclause Refinement Description (refined to)

data

event
data

• add ports (no refined to)
• complete partial declaration (add a data type or an

implementation classifier; change a data type
classifier to a data implementation classifier)

• redefine or add port property associations
ports

event • add event ports (no refined to)
• redefine or add event port property associations

port group

• add port groups (no refined to)
• complete partial declarations (add missing type

reference; change data type classifier to
implementation classifier)

• redefine or add port group property associations

subprogram

• add server or data subprogram features (no refined
to)

• complete partial declarations (change type classifier
to an implementation classifier; no changes of
subprogram type or implementation classifiers)

• redefine or add subprogram property associations

parameters

• add parameters (no refined to)
• complete partial declaration (no change of

parameter classifier to type or implementation;
change a type classifier to implementation)

• redefine or add parameters property associations

features

subcomponent
access

• add subcomponent access features (no refined to)
• complete partial declaration (no subcomponent

classifier to type or implementation; type classifier to
implementation)

• redefine or add subcomponent property
associations

flows • add flow specifications (no refined to)
• redefine or add flow property associations

properties • redefine or add component property associations

Appendix

CMU/SEI-2006-TN-011 125

Refinements within Implementation Declarations
Table 13-8 summarizes the refinements associated within standard implementation
declarations and implementation declarations that extends another.

Table 13-8: Implementations Extensions and Associated Refinements

Refinements within Implementation Extensions

Subclause Refinement Description

refines type • redefine or add feature property associations

subcomponents

• add subcomponents (no refined to)
• complete partially referenced component classifier declaration
• modify in modes with a new set of mode references
• redefine or add subcomponent property associations

calls

• add calls or call sequences (no refined to)
• no modification of call sequences

connections

• add connections (no refined to)
• modify “in modes” references
• redefine or add connection property associations

flows

• add flow specifications (no refined to)
• modify in modes with a new set of mode references or mode

transition references
• redefine or add flow implementation property associations

modes
• add modes (no refined to)
• redefine or add mode property associations

properties • redefine or add component property associations

Index

126 CMU/SEI-2006-TN-011

Index

A
AADL reserved words.. 123
aadlboolean..95, 102–106, 122–123
aadlinteger ...95, 102, 104, 122–123
aadlreal ..102, 104, 122–123
aadlstring ...102, 122–123
Access...34, 36, 41, 46, 56, 71–72, 76, 83–84, 97, 105, 118–119, 123–124
Aggregate Data Port ... 71
All (reserved word) .. 105, 123
And (reserved word) .. 123
Annex ..4, 7, 10, 13, 20, 129
Application software

Data .. 34–36, 58–59, 62, 71–72, 81–84
Process... 23–26
Subprogram ..37, 41, 77–80
Thread ..26–33, 52, 61
Thread group ... 31–32

Applies... 97, 105

B
Binding ..25, 33, 55, 67, 71, 100–102
Bus...46–48, 74–77, 121

C
Calls...77–79, 84–85
Classifier.. 10, 17–19, 32, 36, 37, 102, 122–125
Component ...8, 9, 10, 12, 16–17, 19, 21, 32, 35, 36, 50, 56, 57, 90–93, 115, 117–119
Component type...7, 8, 12, 16, 17, 91–92
Connections .. 9–10, 12, 19, 23, 34, 50, 56–58, 60–72, 74–77,

 ..81, 84, 86–88, 92, 95–98, 101, 105, 111–112, 116, 122–123, 125
Delayed ... 62, 64–66
Immediate...62–63, 65–66

Constant...96, 102–103, 106–107, 123
Contained Property ... 79, 97–100

D
Data .. 34–37, 58–59, 62, 71–72, 81– 84, 120
Data port ... 58–59, 71
Declarations......................................12–13, 16–20, 26, 30, 40, 57–59, 68, 70, 72, 77, 91–93, 95–97, 104–108, 125
Delta ... 123
Device... 48–51, 121

E
End .. 9, 18, 21, 45, 66–67, 78, 91–93, 101, 123
Enumeration ..102, 104, 122–123
Error...28, 57–58, 129

Index

CMU/SEI-2006-TN-011 127

Event... 56, 58–59, 61, 87
Event data port .. 58–59
Execution Platform (Hardware)

Bus... 46–48, 74–77
Device.. 48–51
Memory ... 44–46, 55, 71
Processor ..25, 33, 42–44, 100, 102

Extends ... 21–22

F
False...95–96, 98, 103–104, 106, 122–123
Fault .. 107
Features... 8, 118–119
Flows .. 8–9, 17, 81, 91

G
Group .. 1, 4, 8, 10, 12, 14, 19, 23–25, 30–33, 37, 41, 50, 52, 54, 60, 67–71,

 ...91, 96, 105, 117–119, 123–124

I
Identifier ... 106
Implementation .. 7, 9, 12, 18–19, 26, 28, 44, 93, 112–115, 125
In ... 123
Inherit.. 9, 100, 105, 123
Initial... 32, 86–87, 123
Instance... 54, 60–61
Instantiation .. 52
Interface .. 56
Inverse .. 12, 68, 70, 123
Is (reserved word) .. 123

L
List .. 123

M
Memory .. 44–46, 55, 71, 121
Method calls.. 84
Modes ... 2, 9, 78, 86–89

N
Name... 66–67, 105–106, 111
Namespace.. 10, 19, 21
None ... 17–18, 123
Not .. 123

O
Of ... 123
Or ... 123
Out14, 18, 24, 28, 41, 57–58, 61–64, 67, 70–71, 81–82, 84, 87, 91, 98, 111–112, 118, 123

P
Package... 12, 19, 109

Index

128 CMU/SEI-2006-TN-011

Parameter... 37, 56, 81, 83–84, 91, 105, 118–119, 123–124
Path..91–93, 97, 100, 123
Periodic... 29–30
Platform...42, 55, 117–118
Port ..12, 56–58, 61, 67–71
Port group ... 12, 67–71
Predeclared properties ...29, 33, 40, 44, 46, 71
Private... 108
Process.. 23–26, 120
Processor ...25, 33, 42–44, 100, 102, 121
Properties......................................8, 9, 13, 20, 25, 29–30, 33, 36, 40, 44, 46–47, 50, 55, 66–67, 71, 80, 90, 95, 103
Property ...2, 10, 13, 19–20, 25, 30–31, 33–34, 36–37, 44, 55, 62–63, 67, 71–72,

 ... 77, 79, 86, 90, 95, 96–98, 100–108, 111–112, 116, 122–125
Property set... 13, 20, 103
Property Set .. 6, 10
Property type ...102, 104–105, 122
Property value association ...90, 96, 102, 106
Provides ... 1, 2, 4, 9, 13, 52, 71–72, 76, 83, 87, 97, 118–119, 123
Public.. 108

R
Range...96, 98, 102–103, 105, 122–123
Reference..14, 31–32, 34–35, 67–68, 79, 81, 83, 100, 102, 104, 108–110, 122–124
Refined .. 9, 18, 68, 111–112, 115, 123–125
Refines...10, 12, 19, 21, 123, 125
Refines type .. 112
Remote calls ... 79
Requires... 45, 67, 71–72, 76, 83, 97, 118–119, 123
Reserved words... 123

S
Server... 23, 39, 52, 55, 79–80, 96, 105, 112, 118–119, 122–124
Set ..1–2, 12–13, 20, 24–25, 33, 55, 58, 67–68, 71–72, 87, 95–97,

.. 102–104, 106–108, 111, 113, 122–123, 125
Sink... 91, 93, 123
Source...4, 23, 25, 28, 33–34, 36, 38, 43, 50, 52, 58, 60–62, 66, 71, 91, 93, 123
Subclause.. 30, 124–125
Subcomponents..4, 9, 10, 12, 14, 19, 23, 32, 34–38, 41, 45, 52, 60, 69–71, 76, 79,

 ... 87, 90, 92, 95–98, 100, 115–116, 123, 125
Subprogram ...37, 41, 77–80, 120
System ... 5, 11, 50, 52–54, 60–61, 73–74, 121, 129
System Instance .. 54, 60–61

T
Thread..26–33, 52, 61, 120
Thread group .. 31–32, 120
To ... 123
True ... 71, 95, 103–106, 111–112, 122–123
Type..8, 12, 16–17, 26, 68–69, 91–92, 104–105, 111–113, 115, 122, 124

U
Units .. 5, 10, 46, 102, 104–105, 122–123

V
Value .. 102

CMU/SEI-2006-TN-011 129

References

URLs are valid as of the publication date of this document.

[Feiler 04] Feiler, P. H.; Gluch, D. P.; Hudak, J. J.; & Lewis, B. A. Embedded
System Architecture Using SAE AADL (CMU/SEI-2004-TN-005).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2004. http://www.sei.cmu.edu/publications/documents
/04.reports/04tn005.html

[SAE 06a] Society of Automotive Engineers. SAE Standards: Architecture
Analysis & Design Language (AADL), AS5506, November 2004.
http://www.sae.org/servlets/productDetail?PROD_TYP=STD&PR
OD_CD=AS5506 (2006)

[SAE 06b] Society of Automotive Engineers. SAE Standards for Works in
Progress: Error Model Annex, Draft version 0.91.
http://www.sae.org/servlets/productDetail?PROD_TYP=STD&PR
OD_CD=AS5506/2&HIER_CD=TEAAS2&WIP_SW=YES (2005)

[W3C 04] World Wide Web Consortium (W3C). Extensible Markup Language
(XML) 1.0 (Third Edition). http://www.w3.org/TR/2004
/REC-xml-20040204/ (2004)

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

February 2006
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

The Architecture Analysis & Design Language (AADL): An
Introduction

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

David P. Gluch, Peter H. Feiler, John J. Hudak
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2006-TN-011

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

In November 2004, the Society of Automotive Engineers (SAE) released the aerospace standard AS5506,
named the Architecture Analysis & Design Language (AADL). The AADL is a modeling language that
supports early and repeated analyses of a system’s architecture with respect to performance-critical
properties through an extendable notation, a tool framework, and precisely defined semantics.

The language employs formal modeling concepts for the description and analysis of application system
architectures in terms of distinct components and their interactions. It includes abstractions of software,
computational hardware, and system components for (a) specifying and analyzing real-time embedded and
high dependability systems, complex systems of systems, and specialized performance capability systems
and (b) mapping of software onto computational hardware elements.

The AADL is especially effective for model-based analysis and specification of complex real-time embedded
systems. This technical note is an introduction to the concepts, language structure, and application of the
AADL.

14. SUBJECT TERMS

AADL, architecture design language
15. NUMBER OF PAGES

144
16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

