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Abstract 

In November 2004, the Society of Automotive Engineers (SAE) released the aerospace 
standard AS5506, named the Architecture Analysis & Design Language (AADL). The AADL 
is a modeling language that supports early and repeated analyses of a system’s architecture 
with respect to performance-critical properties through an extendable notation, a tool 
framework, and precisely defined semantics. 

The language employs formal modeling concepts for the description and analysis of 
application system architectures in terms of distinct components and their interactions. It 
includes abstractions of software, computational hardware, and system components for (a) 
specifying and analyzing real-time embedded and high dependability systems, complex 
systems of systems, and specialized performance capability systems and (b) mapping of 
software onto computational hardware elements. 

The AADL is especially effective for model-based analysis and specification of complex real-
time embedded systems. This technical note is an introduction to the concepts, language 
structure, and application of the AADL. 
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1 Introduction 

This document, Part 1 of a use guide for the Architecture Analysis & Design Language 
(AADL), provides an introduction to the language and AADL specifications.1 The AADL is 
defined in the Society of Automotive Engineers (SAE) standard AS5506.2 

1.1 Document Summary 
Readers who are unfamiliar with the AADL will be able to gain a fuller understanding of the 
purpose, capabilities, notation, and elements of this modeling language. Table 1-1 
summarizes the content in this document.  

Table 1-1: Summary of Content in this Document 

Section 
Number Content Summary 

2 
Section 2 summarizes the AADL language and introduces the AADL as a 
framework for the design and analysis of the architectures of component-based 
systems. 

3 
Section 3 provides a foundation for more detailed and problem-oriented 
material in other sections of the document. This section also presents a 
conceptual overview of the AADL abstractions; subsequent sections supply 
details on the syntax and semantics of various language constructs. 

4 

Section 4 focuses on an AADL textual (natural language) specification as a 
human-readable set of representations that consists of a collection of textual 
declarations that comply with the AADL standard [SAE 06a]. The graphical 
representations associated with the textual declarations are also included 
throughout this document to highlight the relationship between the 
representations. 

5 
Section 5 presents the software component abstractions (process, thread, 
thread group data, and subprogram) and provides example declarations for 
these components. 

6 
Section 6 provides the execution platform component abstractions (processor, 
memory, bus, and device) and provides example declarations for these 
components. 

7 Section 7 discusses the system abstraction and presents examples of the 
specification of composite systems and their instances. 

                                                 
1  The use guide for the AADL will be published initially as a series of technical notes. 
2  For more information on the development, ongoing applications, and future plans of the AADL, go 

to http://www.aadl.info. To purchase a copy of the standard, go to http://www.sae.org/servlets 
/productDetail?PROD_TYP=STD&PROD_CD=AS5506. 
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Table 1: Summary of Content in this Document (cont.)  

Section 
Number Content Summary 

8 
Section 8 describes the abstractions that support the specification of 
component interactions. Examples of the specification of component interfaces 
and their interconnections are presented. 

9 Section 9 presents the specification of alternative operational states of a 
system. Modes mode transitions, and examples of their specification are 
described. 

10 Section 10 describes the use of the AADL flows concept and presents 
examples of the specification of abstract flows throughout a system. 

11 Section 11 discusses property constructs and presents examples of property 
type and name definitions, property set declarations, and property associations. 

12 Section 12 describes the constructs for organizing an AADL specification. It 
includes examples of AADL architectural pattern sets. 

The Appendix (pages 117–125) provides tabular summaries of the features, components, and 
built-in properties of the language. 

1.2 Reader’s Guide to Technical Interests 
Readers familiar with the AADL standard document will be able to take advantage of the 
detailed descriptions and examples (in textual and graphical forms) shown in the technical 
interest areas that are correlated with sections in this document in Table 1-2.  

Table 1-2: Technical Interests and Relevant Sections in this Document 

Section Numbers Technical Considerations 

5.4, 5.5, 8.3.1, 8.3.2, 8.4, 
and 8.5 

Modeling Application Software—These sections address data 
and subprogram components and their interactions (e.g., calls 
and component access. 

5.1, 5.2, 5.3, 8.1, 8.2, 
8.3.1, 8.3.2, and 8.4.2 

Execution Tasking and Concurrency—These sections present 
relevant aspects of runtime interaction, coordination, and timing 
associated with multiple execution paths. 

6, 7, and 8.3.3 System Instances and Binding Software to Hardware 
Components—These sections discuss issues and capabilities in 
defining a complete instance of a system architecture. 

11 Properties of Model Elements—This section discusses assigning 
values to properties and defining new properties within an AADL 
model.  
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Table 1-2: Technical Interests and Relevant Sections in this Document (cont.) 

Section Numbers Technical Considerations 

9 and 11.2 Partitioning Runtime Configurations—These sections present the 
structuring of alternative architectural configurations for a system. 

10, 11.3, 11.4, and 11.5 Analysis Abstractions—These sections discuss capabilities that 
facilitate analysis of a system architecture.  

1.3 Conventions Used in this Document 
The textual and graphical illustrations used in this technical note reflect the styles used in the 
AADL standard document [SAE 06a], except where noted. In addition, for consistency and 
clarification in this document, we have represented AADL core language concepts and key 
specification elements the same way (i.e., using the same type style and format) in textual 
examples and explanatory text (in sections 4 through 12). Also, we have used the AADL icon 
( ) to indicate a different semantics than that represented by a similar graphical symbol in 
the Unified Modeling Language (UML).  
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2 SAE AADL Overview 

The SAE AADL standard provides formal modeling concepts for the description and analysis 
of application systems architecture in terms of distinct components and their interactions. The 
AADL includes software, hardware, and system component abstractions to  

• specify and analyze real-time embedded systems, complex systems of systems, and 
specialized performance capability systems  

• map software onto computational hardware elements  

The AADL is especially effective for model-based analysis and specification of complex real-
time embedded systems.  

2.1 Abstraction of Components 
Within the AADL, a component is characterized by its identity (a unique name and runtime 
essence), possible interfaces with other components, distinguishing properties (critical 
characteristics of a component within its architectural context), and subcomponents and their 
interactions. 

In addition to interfaces and internal structural elements, other abstractions can be defined for 
a component and system architecture. For example, abstract flows of information or control 
can be identified, associated with specific components and interconnections, and analyzed. 
These additional elements can be included through core AADL language capabilities (e.g. 
defining new component properties) or the specification of a supplemental annex language.3  

The component abstractions of the AADL are separated into three categories:  

1. application software 

a. thread: active component that can execute concurrently and be organized into 
thread groups 

b. thread group: component abstraction for logically organizing thread, data, and 
thread group components within a process 

c. process: protected address space whose boundaries are enforced at runtime 

d. data: data types and static data in source text  

e. subprogram: concepts such as call-return and calls-on methods (modeled using a 
subprogram component that represents a callable piece of source code) 

                                                 
3  Annex libraries enable a designer to extend the language and customize an AADL specification to 

meet project- or domain-specific requirements. An annex document is an approved extension to the 
core AADL standard.  [SAE 06a]. 
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2. execution platform (hardware)  

a. processor: schedules and executes threads 

b. memory: stores code and data 

c. device: represents sensors, actuators, or other components that interface with the 
external environment 

d. bus: interconnects processors, memory, and devices 

3. composite  

a. system: design elements that enable the integration of other components into 
distinct units within the architecture 

System components are composites that can consist of other systems as well as of software or 
hardware components.   

The AADL standard includes runtime semantics for mechanisms of exchange and control of 
data, including  

• message passing 

• event passing 

• synchronized access to shared components 

• thread scheduling protocols 

• timing requirements 

• remote procedure calls  

In addition, dynamic reconfiguration of runtime architectures can be specified using 
operational modes and mode transitions.  

2.2 Architectural Analysis 
The AADL can be used to model and analyze systems already in use and design and integrate 
new systems. The AADL can be used in the analysis of partially defined architectural patterns 
(with limited architectural detail) as well as in full-scale analysis of a complete system model 
extracted from the source code (with completely quantified system property values). 

AADL supports the early prediction and analysis of critical system qualities—such as 
performance, schedulability, and reliability. For example, in specifying and analyzing 
schedulability, AADL-supported thread components include the predeclared4 execution 
property options of periodic, aperiodic (event-driven), background (dispatched once and 
executed to completion), and sporadic (paced by an upper rate bound) events. These thread 
characteristics are defined as part of the thread declaration and can be readily analyzed.  

                                                 
4  There is a standard predeclared property set named AADL_Properties that is part of every 

AADL specification [SAE 06a]. 
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Within the core language, property sets can be declared that include new properties for 
components and other modeling elements (e.g. ports and connections). By utilizing the 
extension capabilities of the language, too, additional models and properties can be included. 
For example, a reliability annex can be used that defines reliability models and properties of 
components facilitating a Markov or fault tree analysis of the architecture [SAE 06b]. This 
analysis would assess an architecture’s compliance with specific reliability requirements.  

Collectively, these AADL properties and extensions can be used to incorporate new and 
focused analyses at the architectural design level. These analyses facilitate tradeoff 
assessments among alternative design options early in a development or upgrade process. 

AADL components interact exclusively through defined interfaces. A component interface 
consists of directional flow through  

• data ports for unqueued state data 

• event data ports for queued message data  

• event ports for asynchronous events 

• synchronous subprogram calls 

• explicit access to data components 

Interactions among components are specified explicitly. For example, data communication 
among components is specified through connection declarations. These can be midframe 
(immediate) communication or phase-delayed (delayed) communication. The semantics of 
these connections assures deterministic transfer of data streams. Deterministic transfer means 
that a thread always receives data with the same time delay; if the receiving thread is over- or 
under-sampling the data stream, it always does so at a constant rate. 

Application components have properties that specify timing requirements such as period, 
worst-case execution time, deadlines, space requirements, arrival rates, and characteristics of 
data and event streams. In addition, properties identify the following:  

• source code and data that implement the application component being modeled in the 
AADL 

• constraints for binding threads to processors, source code, and data onto memory  

The constraints can limit binding to specific processor or memory types (e.g., to a processor 
with DSP support) as well as prevent colocation of application components to support fault 
tolerance [Feiler 04].
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3 AADL Language Abstractions  

The core language concepts and key specification elements of AADL are summarized in 
Figure 3-1. In AADL, components are defined through type and implementation 
declarations. A Component Type declaration defines a component’s interface elements and 
externally observable attributes (i.e., features that are interaction points with other 
components, flow specifications, and internal property values).  A Component 
Implementation declaration defines a component’s internal structure in terms of 
subcomponents, subcomponent connections, subprogram call sequences, modes, 
flow implementations, and properties.  Components are grouped into application 
software, execution platform, and composite categories. Packages enable the organization of 
AADL elements into named groups. Property Sets and Annex Libraries enable a designer to 
extend the language and customize an AADL specification to meet project- or domain-
specific requirements.5  

Component implementation 
identifier
• extends {component implementation}
• refines type
• subcomponents
• connections
• call sequences
• modes 
• flows
• properties

Component implementation 
identifier
• extends {component implementation}
• refines type
• subcomponents
• connections
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Component type
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• parameter

• ports
• access
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• parameter

Component Type 
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Component Type 
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• extends {component_type}
• features 
• flows
• properties

Package
public
- declarations
private
- declarations

Package
public
- declarations
private
- declarations

• modes
• mode transitions

Property Set
property types
property definitions
constants

Property Set
property types
property definitions
constants

Annex
LibraryAnnex

Library

more details references implements

Components
• data
• subprogram
• thread
• thread group
• process

• memory
• device
• processor
• bus

• system

Legend

 
Figure 3-1:  Summary of AADL Elements  

                                                 
5  Annex libraries enable a designer to extend the language and customize an AADL specification to 

meet project- or domain-specific requirements. An annex document is an approved extension to the 
core AADL standard. 



Section 3: AADL Language Abstractions 

8  CMU/SEI-2006-TN-011 

3.1 Components 
Components form the central modeling vocabulary for the AADL. Components are assigned 
a unique identity (name) and are declared as a type and implementation within a 
particular component category. A component category defines the runtime essence of a 
component. There are three distinct sets of component categories: 

1. application software 

a. thread: a schedulable unit of concurrent execution 

b. thread group: a compositional unit for organizing threads  

c. process: a protected address space  

d. data: data types and static data in source text 

e. subprogram: callable sequentially executable code  

2.  execution platform 

a. processor: components that execute threads  

b. memory: components that store data and code 

c. device: components that interface with and represent the external environment  

d. bus: components that provide access among execution platform components 

3. composite  

a. system: a composite of software, execution platform, or system components 

Each of the component categories is discussed in separate sections of this document. The 
syntax and semantics of declarations in an AADL specification are discussed in Section 4.1. 

3.2 Component Types   
An AADL component type declaration establishes a component’s externally visible 
characteristics. For example, a declaration specifies the interfaces of a thread component. 
A component type declaration consists of a defining clause and descriptive subclauses; Figure 
3-2 shows a type declaration of a thread. Features are the interfaces of the component. 
Flows specify distinct abstract channels of information transfer. Properties define 
intrinsic characteristics of a component. There are predefined properties for each 
component category (e.g., the execution time for a thread).  

 
Figure 3-2:  Subclauses of a Type Declaration 

thread <name> 
extends 
features 
flows 
properties 
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The extends subclause enables one component type declaration to build upon another. A 
component declared as an extension inherits the characteristics of the original component 
(i.e., it is a subclass of the original). Within a component declared as an extension of another 
type, interfaces, flows, and properties can be added; partially declared elements of the 
antecedent component type can be detailed; and properties can be modified (refined). These 
qualities permit the modeling of variations in the interfaces of a family of related 
components.  

3.3 Component Implementations 
A component implementation specifies an internal structure in terms of 
subcomponents, interactions (calls and connections) among the features of 
those subcomponents, flows across a sequence of subcomponents, modes that 
represent operational states, and properties.  

The subclauses of an implementation declaration are summarized in Figure 3-3. The 
subcomponents, connections, and calls declarations specify the composition of a 
component as a collection of components (subcomponents) and their interactions. Flows 
represent implementations of flow specifications in the component type or end-to-end flows 
to be analyzed (i.e., flows that start in one subcomponent, go through zero or more 
subcomponents, and end in another subcomponent). Modes represent alternative operational 
modes that may manifest themselves as alternate configurations of subcomponents, 
calls sequences, connections, flow sequences, and properties. Properties 
define intrinsic characteristics of a component. There are predefined properties for each 
component implementation. 

 
Figure 3-3:  Subclauses of an Implementation Declaration 

Multiple implementations of a component type can be declared, allowing multiple variants 
with the same external interfaces to be modeled because each implementation provides 
a realization of a component that satisfies the same interface specified by the component 
type. In addition, a component implementation may extend and refine other previously 
declared component implementations. Extended implementations (declared with the 
extends subclause) inherit the characteristics of the original component 
implementation and all of its predecessors. Refinement allows partially specified 

 thread implementation <typeidentifier>.<implementationidentifier> 
extends 
refines type 
subcomponents 
calls 
connections 
flows 
modes 
properties 
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component implementations (templates) to be completed, while extension allows a 
component implementation to be expressed as variation of a common component 
description through additions. In addition, an extends implementation declaration can 
add property values to the features of its corresponding type. These additions can be 
made through the refines type subclause.  

Component decomposition is defined through subcomponents declarations within 
component implementation declarations. A subcomponent represents the decomposition 
element and the classifier (named implementation) represents a choice in a family. 
A component instance is created by instantiating a component implementation and each 
of its subcomponents recursively. 

3.4 Packages, Property Sets, and Annexes 
 

AADL packages permit collections of component declarations to be organized into separate 
units with their own namespaces. Elements with common characteristics (e.g., all 
components associated with network communications) can be grouped together in a 
package and referenced using the package name. Packages can support the independent 
development of AADL models for different subsystems of a large-scale system by 
providing a distinct namespace for each group of subsystem elements. 

A property set is a named grouping of property declarations that define new 
properties and property types that can be included in a specification. For example, a 
security property set can include definitions for security levels required in a database 
system. These properties are referenced using the property set name and can be 
associated with components and other modeling elements (e.g., ports or connections) within a 
system specification. Their declaration and use become part of the specification.  

An annex enables a user to extend the AADL language, allowing the incorporation of 
specialized notations within a standard AADL model. For example, a formal language that 
enables an analysis of a critical aspect of a system (e.g., reliability analysis, security, or 
behavior) can be included within an AADL specification.6  

Each of these elements is described in more detail in other sections of this document.

                                                 
6  Annex libraries enable a designer to extend the language and customize an AADL specification to 

meet project- or domain-specific requirements. An annex document is an approved extension to the 
core AADL standard.  
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4 AADL System Models and Specifications 

An AADL system model describes the architecture and runtime environment of an 
application system in terms of its constituent software and execution platform (hardware) 
components and their interactions. An AADL model is captured in a specification consisting 
of syntactically and semantically correct AADL declarations. A complete AADL system 
model includes all of the declarations required to instantiate a runtime instance of an 
application system that the specification represents (e.g., an aircraft’s flight control system).  

From a user perspective, an AADL specification and its constituent declarations can be 
expressed textually, graphically, in a combination of those representations, or as Extensible 
Markup Language (XML). The AADL textual and graphical notations are defined by the 
SAE AADL standard and its extensions [SAE 06a]. The XML form is defined in Extensible 
Markup Language (XML) 1.0 (Third Edition) [W3C 04]. Figure 4-1 summarizes the 
alternative representations of an AADL specification, showing sample textual, graphical, and 
XML representations. 

 

 
Figure 4-1:  AADL Representations 

 XML 
<threadType name="data_processing"> 
<features> 
 <dataPort name="raw_speed_in"/> 
  <dataPort name="speed_out" 
direction="out"/> 
  </features> 

 
thread data_processing 
features 
raw_speed_in: in data port; 
speed_out: out data port; 
Properties 
Period => 20 ms; 
end data_processing; 

 AADL Graphical 

 
 

data_processing 
 

AADL Textual 
20 ms 
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4.1 AADL Textual Specifications 
This section focuses on an AADL textual (natural language) specification as a human-
readable collection of textual declarations that comply with the AADL standard [SAE 06a]. 
Graphical notations associated with the textual specifications are included in this document to 
highlight the relationship between representations and to help the reader visualize the 
architecture. Detailed descriptions of the graphical representations for AADL constructs and 
declarations are provided in the graphical standard.7 The principal AADL declarations are 
summarized in Table 4-1.  

Table 4-1: Principal AADL Declarations 

Declaration Description 

Component Type: 
system, process, thread, thread 
group data, subprogram, 
processor, device, memory, and 
bus 

The component type declaration establishes the 
identity (component category and name) and 
defines the features, flows, and properties of a 
component type. A component type declaration may 
also declare the type as an extension of another 
type (extends). 

Component Implementation: 
system, process, thread, thread 
group data, subprogram, 
processor, device, memory, and 
bus 

The component implementation declaration 
establishes the identity (component category, type, 
and name) and defines the refinements (refines 
type subclause), subcomponents, calls, 
connections, flows, modes, and properties of a 
component implementation. The identity must 
include a declared component type consistent with 
the component category. The component 
implementation declaration may also declare the 
implementation as an extension of another 
implementation (extends subclause). 

Port Group Type 

Port group type declarations establish the identity 
(name) and define the features and properties of a 
grouping of ports and/or port groups. Within the 
features declaration, a port group may be defined 
as the inverse of another port group. A port group 
type declaration may also declare the port group as 
an extension of another port group type (extends). 

Package 

The package declaration establishes the identity 
(name) of a collection of AADL declarations, groups 
those declarations into private and public sections, 
and declares properties associated with a package. 
Packages are used to logically organize AADL 
declarations. AADL component type, 
implementation, and port group declarations placed 
in AADL packages can be referenced by 
declarations in other packages.  

                                                 
7  The complete set of graphical symbols for AADL components is presented in “Graphical AADL 

Notation,” a draft document at the time of the publishing of this technical note. 
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Table 4-1: AADL Declarations (cont.) 

Property Set 

Property set declarations introduce additional 
properties, property types, and property constants 
that are not included as predeclared AADL 
properties.8 Each property set has a unique global 
name and provides a unique namespace for the 
items declared in it. In other words, properties and 
property types declared in a property set are 
referenced by property set name and item name. 

Annex Library 

Annex library declarations establish the identity 
(name) and define the contents of a set of reusable 
declarations that are not part of the standard AADL 
language. Annex declarations are used to extend 
AADL’s core modeling and analysis capabilities. 

4.2 Graphical Representations 
The AADL’s graphical notation facilitates a clear visual presentation of a system’s structural 
hierarchy and communication topology and provides a foundation for distinct architecture 
perspectives. Graphical notation elements for AADL components are shown in Figure 4-2. 
The letter-shaped AADL icon ( ) is used to indicate a different semantics than that 
represented by a similar graphical symbol in the Unified Modeling Language (UML). This 
symbol is not required in notation; it can be used where a distinction from a UML symbol is 
necessary. Additional symbols, such as circles, are used to represent component properties 
(e.g., the period of a thread). 

Figure 4-2:  AADL Graphical Notation  
                                                 
8  There is a standard predeclared property set named AADL_Properties that is a part of every 

AADL specification [SAE 06a]. 
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4.3 Example Specification 
Table 4-2 contains an excerpt from an AADL textual specification and includes sample 
graphical representations of portions of the specification.9 The excerpt shows simplified 
component type, component implementation, and subcomponents declarations (i.e., 
only some of the features, flows, or properties are declared) and illustrates the 
pattern other examples in this document will follow.  

In the example shown in Table 4-2, related type and implementation declarations are 
grouped together. Individual declarations can be arranged in any order within an AADL 
specification. For example, a component type declaration that includes a specific port 
group as one of its interfaces (features) can precede that port group’s type declaration. 
An alternative organization might involve grouping together all type declarations. In addition, 
all or some of the declarations shown in Table 4-2 can be partitioned into groups using 
packages. The options provided by packages and their implications are discussed in 
Section 12 (Organizing a Specification).  

The excerpt in Table 4-2 contains one process and two thread component type 
declarations. The process type definition has the component type identifier (name) 
control_processing. Two data ports, in data port and out data port, are 
declared for this process type. The sensor_data and command_data data types are 
declared in individual data type declarations. 

The thread type definition identifiers are control_in and control_out. An 
implementation declaration of the process type control_processing is shown. 
The component implementation identifier is speed_control. An 
implementation is referenced by using both the component type identifier and the 
component implementation identifier, separated by a period (.). A reference to a 
thread implementation input_processing_01 of the thread type 
control_in is shown in the declaration of the subcomponent control_input. Thus, 
control_input is an instance of the component implementation 
control_in.input_processing_01. 

Graphical representations of the process type declaration control_processing and 
the process implementation declaration are shown in the latter portions of Table 4-2. 
The process implementation symbol in the example is bounded with a bold line. 
Bold-lining of an implementation symbol is optional. It can be useful in distinguishing 
component type and component implementation representations visually. A solid black 
triangular symbol represents a data port. Port and other features symbols are 
discussed in Section 8 (Component Interactions). 

                                                 
9   In the example specifications shown here and in Sections 5–12, we typically follow the pattern of 

displaying the textual representation followed by the graphical representation in portions of the 
same table, as shown in Table 4-2. Where needed to provide clarification, we have placed the 
textual and graphical representations in separate tables and figures. 
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Table 4-2: A Simplified Example of an AADL Specification10 
 
-- A process type definition with the component type 
-- identifier (name) "control_processing" is shown below.  
 
process control_processing 
features  
input: in data port sensor_data; 
output: out data port command_data;  
end control_processing; 
 
-- Below is an implementation of process type "control_processing"  
-- The component implementation identifier(name)is "speed_control" 
-- The implementation is referenced by using both the component type 
-- identifier and the component implementation identifier, separated 
-- by a period(.)in the form: control_processing.speed_control. 
-- A reference to a thread implementation “input_processing_01” 
-- of the thread type “control_in” is shown below in the 
-- declaration of the subcomponent “control_input”  
 
process implementation control_processing.speed_control 
subcomponents 
control_input: thread control_in.input_processing_01; 
control_output: thread control_out.output_processing_01; 
end control_processing.speed_control; 
 
-- The declaration of the thread type “control_in” is shown below. 
thread control_in 
end control_in; 
 
-- The declaration of the thread implementation   
-- “control_in.input_processing_01” is shown below. 
thread implementation control_in.input_processing_01 
end control_in.input_processing_01; 
 
-- The declaration of the thread type “control_out” is shown below. 
thread control_out 
end control_out; 
 
-- The declaration of the thread implementation   
-- “control_out.output_processing_01” is shown below. 
thread implementation control_out.output_processing_01 
end control_out.output_processing_01; 
 
-- The declaration of the data type “sensor_data” is shown below. 
data sensor_data 
end sensor_data; 
 
-- The declaration of the data type “command_data” is shown below. 
data command_data 
end command_data; 

                                                 
10  Comment lines in an AADL specification are prefaced by two dashes (--). 
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Table 4-2:  A Simplified Example of an AADL Specification (cont.) 

input output
control_processing

  

process type control_processing 

control_processing.speed_control

control_input control_output
input output

 

process implementation control_processing.speed_control 

4.4 Type Declarations 
The structures for a component type declaration (area labeled ) and a type declaration that 
extends another type (area labeled ) are shown in Table 4-3, along with sample component 
type declarations (area labeled ). The sample type declarations are for a process type 
simple_speed_control and a thread type data_management. The first line of 
each declaration begins with the appropriate component category reserved word in boldface. 
In these examples, process and thread are reserved words. 

Table 4-3: Sample Component Type Declarations 

component_category type_identifier                                 
  features                     
  flows  
  properties  

end type_identifier ; 

component_category type_identifier                                 
  extends unique_component_type_identifier 
  features  
  flows  
  properties  
end type_identifier ; 
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Table 4–3:  Sample Component Type Declarations (cont.) 

process simple_speed_control                                       
features  
raw_speed: in data port speed_type; 
toggle_mode: in event port; 
throttle_cmd: out data port throttle_data; 
flows none; 
end simple_speed_control; 
 
thread data_management extends system_management             
features 
in_data: refined to in data port speed_type; 
out_data: out data port throttle_data; 
end data_management; 
 
data speed_type 
end speed_type; 
 
data throttle_data 
end throttle_data; 
 
thread system_management 
features 
in_data: in data port; 
end system_management; 

 

The component type classifier (name) of the type follows the component category 
reserved word. A component type declaration may contain up to four subclauses that are 
identified with these reserved words:  

• features: specifies the interaction points with other components, including the inputs 
and accesses required by the component and all the outputs and items the component 
provides  

• flows: defines specifications of logical flows through the component from incoming 
interaction points to outgoing interaction points (These flows can be used to specify end-
to-end flows without having to expose or have available any implementation detail 
of the component. Flows can trace data, control, or mixed flow by connecting event and 
data ports.) 

• properties: specifies properties of the component that apply to all instances of this 
component unless overwritten in implementations or extensions 

• extends: is used where a type extends another type, as shown for the thread type 
data_management in Table 4-3 

If there are no entries under the subclause reserved words features, flows, or 
properties, they may be omitted, or the reserved word statement none can be used to 
signify explicitly that there are no entries. For example, the reserved word subclause flows 
is omitted in the thread type declaration for data_management and none is used in the 
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other empty subclause cases in Table 4-3. The use of none explicitly designates that the 
subclause is empty. The use of none avoids the misinterpretation of a developer’s accidental 
omission of a subclause declaration as intentional. 

In Table 4-3, these declarations under the features subclause in the type declaration for 
simple_speed_control define ports for the type: 

raw_speed: in data port speed_type; 
toggle_mode: in event port; 
throttle_cmd: out data port throttle_data; 

Notice that there is one in data port declaration in the features section of the type 
system_management. The type declaration for data_management extends the type 
system_management. Within this type extension declaration, the in data port 
in_data declaration is completed by including refined to and adding the data type 
speed_type to the port declaration, and an out data port declaration is added. 

A component type declaration is terminated by the reserved word end followed by the 
component’s type classifier and a semicolon (;). 

4.5 Implementation Declarations 
A component implementation declaration structure (  and ) and a sample declaration 
( ) are shown in Table 4-4. The basic form ( ) declares a distinct implementation. The 
second form ( ) includes the reserved word extends, indicating that the declared 
implementation extends another.  

In the sample declaration (  in Table 4-4), a thread implementation with the name 
control_laws.control_input is declared as an implementation of the type 
control_laws. The implementation name is formed using the type identifier 
followed by a specific identifier for the implementation. These are separated by a period 
(.). Within the control_laws.control_input declaration, a single data 
subcomponent is declared, the reserved word statement (none) is used for the calls 
subclause, and the other subclauses are omitted.  
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Table 4-4: Component Implementation Declarations 

component_category implementation implementation_name               
   refines type  
   subcomponents  
   calls     
   connections  
   flows  
   modes  
   properties  
end implementation_name ; 

component_category implementation implementation_name               
   extends another_implementation_name  
   refines type 
   subcomponents  
   calls     
   connections  
   flows  
   modes  
   properties  
end implementation_name ; 

thread control_laws                                                 
end control_laws; 
 
data static_data 
end static_data; 
 
thread implementation control_laws.control_input 
subcomponents 
configuration_data: data static_data; 
calls none; 
end control_laws.control_input; 

4.6 Package Declarations 
Packages provide a way to organize component type declarations, implementation 
declarations, and property associations within an AADL specification. Each package 
introduces a distinct namespace for component classifier declarations, port group 
type declarations, annex library declarations, and property associations.  

For example, a component type may be declared within a package and used in multiple 
subsystem declarations. This is shown in Table 4-5 where the package 
acutators_sensors includes a device speed_sensor that is used in the primary 
and backup implementation of the system control. Note that the package name 
with a double colon (::) is used to precede the device speed_sensor when it is 
referenced (e.g., in the subcomponent declaration within the implementation 
declarations). The comment line (-- …) is used to indicate other declarations that are not 
shown. Packages are discussed in more detail in Section 12.1 (Packages). 
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Table 4-5: Example Packages 

package actuators_sensors 
public 
device speed_sensor 
end speed_sensor; 
-- …    
end actuators_sensors; 
 
system control 
end control; 
 
system implementation control.primary 
subcomponents 
speed_sensor: device actuators_sensors::speed_sensor; 
-- … 
end control.primary; 
 
system implementation control.backup 
subcomponents 
speed_sensor: device actuators_sensors::speed_sensor; 
-- … 
end control.backup; 

4.7 Property Set Declarations 
Property set declarations allow the addition of properties to the core AADL 
property set. These additions can be used to support specialized modeling and analysis 
capabilities that can be defined in AADL annexes. Declarations in an AADL specification can 
refer to packages and property sets that may be separately stored. More details on 
property set declarations can be found in Section 11.3 (Defining New Properties). 
References to property names, types, and constants declared within a property set 
are prefaced by the name of the property set.  

4.8 Annex Library Declarations 
Annex library declarations enable extensions to the core language concepts and syntax. 
Often these extensions support custom analyses using specialized models and abstractions 
(e.g., an error annex that supports reliability analysis). Annex libraries define a sublanguage 
that can be used in annex subclauses within component type and implementation 
declarations. Annex libraries are declared within packages and annex subclauses can be 
included within component type and implementation declarations. These subclauses use 
the elements declared in the annex library (e.g., associating values or expressing assertions 
with elements of the annex).11 

                                                 
11  The language can also be extended through annex documents, which are approved extensions to the 

core AADL standard. 
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4.9 Namespaces 
There is a global namespace for an AADL specification. Packages and property set 
names are in the global namespace. Their content can be named anywhere by preceding it 
with the package name. Component declarations placed directly in an AADL specification 
are visible only within that AADL specification. They are not accessible from within 
packages or other AADL specifications; they are considered to reside in an anonymous 
namespace. An AADL specification acts as a local work area whose component declarations 
are only locally visible. 

4.10 Partial Specifications 
A number of declarations within a syntactically and semantically correct specification can be 
partially completed. For example, neither the identity (type or implementation) of a 
component contained within another nor the data type for the ports in a data connection 
between components needs to be specified until a complete representation is instantiated 
from the specification (i.e., the design is finalized). 

The flexibility to develop partial specifications can be used effectively during design, 
especially in the early stages where details may not be known or decided upon. This 
flexibility allows the syntactic checking of an incomplete specification and enables extended 
semantic, domain, or project-specific analysis to be conducted. For example, the detailed 
signal timing can be specified and signal latency can be analyzed without a complete or 
detailed specification of the representation of data communicated through ports or other 
elements of the design. Similarly, using the flow specification construct, end-to-end flows can 
be analyzed without the system hierarchy being detailed to the level required for 
instantiation.  

4.11 Extends, Refines, and Partial Specification 
When coupled with the extends, refines, and implementation facilities of the 
language, partial specification can be used to define a core type or implementation 
pattern. This core pattern can be used to generate a family of components (i.e., core patterns 
with less detail and descendants with more specific and modified declarations). Table 4-6 
shows an example of the use of  extends. The basic system component type 
declaration forms the core for two type extensions, basic_plus and control. Within the 
extensions, the data input port declaration input_data is completed with a data type, 
and an additional port is added. 

A more detailed discussion of the extension and refinement capabilities and additional 
example patterns is presented in Section 12.2 (Design Patterns). 
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Table 4-6: A Simple Extends and Refines Example 

system basic 
features 
input_data: in data port; 
-- … 
end basic; 
-- 
system basic_plus extends basic 
features 
input_data: refined to in data port sensor_data; 
in_event: in event port; 
-- … 
end basic_plus; 
-- 
system control extends basic 
features 
input_data: refined to in data port speed_data; 
in_event_data: in event data port; 
-- … 
end control; 
-- 
data sensor_data 
end sensor_data; 
-- 
data speed_data 
end speed_data; 
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5 Software Components 

Software component abstractions represent processed source text (executable binary images) 
and execution paths through executable code. Executable binary images (i.e., executable code 
and data) are the result of processing (such as compiling or linking) source text associated 
with a component. A component’s source text may be written in a conventional programming 
language (e.g., Ada, Java, or C), domain-specific modeling language (e.g., 
MatLab/Simulink), or hardware description language (e.g., VHDL). The source text may also 
be an intermediate product of processing those representations (e.g., an object file). 

The AADL software component abstractions are 

• process (Section 5.1): represents a protected address space  

• thread (Section 5.2): represents a unit of concurrent execution 

• thread group (Section 5.3): represents a compositional unit for organizing threads  

• data (Section 5.4): represents data types and static data in source text 

• subprogram (Section 5.5): represents callable sequentially executable code  

5.1 Process  
The process abstraction represents a protected address space, a space partitioning where 
protection is provided from other components accessing anything inside the process. The 
address space contains  

• executable binary images (executable code and data) directly associated with the 
process  

• executable binary images associated with subcomponents of the process  

• server subprograms (executable code) and data that are referenced by external 
components  

A process does not have an implicit thread. Therefore, to represent an actively 
executing component, a process must contain a thread. 

5.1.1 Textual Representation 

Table 5-1 contains a partial listing of the textual specification for a process. The process 
is shown with examples of all three of its allowed subcomponent categories: (1) thread, (2) 
thread group, and (3) data. In this listing, simplified type and implementation 
declarations for the components are provided. Two ports are shown, one as input and one as 
output for the process. In a complete specification, connections that define the 
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information flow would be declared within the process implementation. Only the 
subcomponent declarations of the process implementation of 
control_processing.speed_control are shown explicitly. Other details of the 
specification are not included. These omissions are legal for a syntactically correct partial 
specification as discussed in Section 4.10 (Partial Specifications). 

Table 5-1: Textual Representation of a Sample Process  

process control_processing 
features 
input: in data port; 
output: out data port; 
end control_processing; 
 
process implementation control_processing.speed_control 
subcomponents 
control_input: thread control_in.input_processing_01; 
control_output: thread control_out.output_processing_01; 
control_thread_group: thread group 
control_threads.control_thread_set_01; 
set_point_data: data set_point_data_type; 
end control_processing.speed_control; 
 
thread control_in 
end control_in; 
 
thread implementation control_in.input_processing_01 
end control_in.input_processing_01; 
 
thread control_out 
end control_out; 
 
thread implementation control_out.output_processing_01 
end control_out.output_processing_01; 
 
thread group control_threads 
end control_threads; 
 
thread group implementation control_threads.control_thread_set_01 
end control_threads.control_thread_set_01; 
 
data set_point_data_type 
end setpoint_data_type; 

5.1.2 Graphical Repesenation  

A graphical representation of the process implementation from Table 5-1 
control_processing.speed_control is shown in Figure 5-1. The process is 
shown with examples of its allowed subcomponent categories: thread, thread group, 
and data. As shown in Figure 5-1, two threads (control_input and 
control_output), a single data component (set_point_data), and a thread 
group (control_thread_group) are contained within the process 
implementation control_processing.speed_control. 
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Figure 5-1:  Graphical Representation of a Sample Process  

5.1.3 Properties 

For the process and its subcomponent threads, predeclared properties for processes 
enable the specification of the  

• runtime enforcement of memory protection 

• relevant source file information 

• source file loading times 

• scheduling protocols 

• binding constraints 

In addition, there are properties that can be inherited and shared by a process’s 
subcomponent threads (e.g., Period, Deadline, or Actual_Processor_Binding). 
These include predeclared properties as well as new properties, defined as 
prescribed in Section 11.3 (Defining New Properties).12 

5.1.4 Constraints 

An AADL process represents only a protected address space. Consequently, processes 
must contain at least one explicitly declared thread or thread group subcomponent. In 
other words, it is not equivalent to a POSIX process that represents both a protected address 
space and an implicit thread. 

Table 5-2 summarizes the permitted type declaration and implementation declaration 
elements of a process. A process can only be a subcomponent of a system component. 
A summary of the allowed subcomponent relationships and features is included in the 
Appendix on pages 117–119. 

 

                                                 
12  There is a standard predeclared property set named AADL_Properties that is a part of every 

AADL specification [SAE 06a]. 
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Table 5-2: Summary of Permitted Process Declarations  
Category Type Implementation 

process 

Features:  
• server subprogram 
• port 
• provides data access 
• requires data access  
Flow specifications: yes 
Properties yes 

Subcomponents: 
• data 
• thread 
• thread group 
Subprogram calls: no 
Connections: yes 
Flows: yes 
Modes: yes 
Properties yes 

5.2 Thread 
A thread is a concurrent schedulable unit of sequential execution through source code. 
Multiple threads represent concurrent paths of execution. A variety of execution 
properties can be assigned to threads, including timing (e.g., worst case execution 
times), dispatch protocols (e.g., periodic, aperiodic, etc.), memory size, and processor 
binding. 

5.2.1 Textual Representation 

Sample thread type, implementation, and subcomponents declarations are shown 
in Table 5-3. In Table 5-3, there are two thread type and three thread 
implementation declarations. Two of the thread implementation declarations 
describe separate implementations of the same thread type data_input. Instances of 
threads are defined in subcomponents subclause declarations of the process 
implementation data_management.  

Related type and implementation declarations are grouped together in this example. 
This grouping of declarations is used for clarity and is not a required organization within a 
specification.  
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Table 5-3: A Sample Thread Declaration  

thread data_processing 
end data_processing; 
 
thread implementation data_processing.integrated_data_processing 
end data_processing.integrated_data_processing; 
 
thread data_input 
end data_input; 
 
thread implementation data_input.roll_data_input 
end data_input.roll_data_input; 
 
thread implementation data_input.pitch_data_input 
end data_input.pitch_data_input; 
 
process data_management 
end data_management; 
 
process implementation 
data_management.autonomous_submarine_data_management 
subcomponents 
roll_input: thread data_input.roll_data_input; 
pitch_input: thread data_input.pitch_data_input; 
attitude_data_processing: thread 
data_processing.integrated_data_processing; 
end data_management.autonomous_submarine_data_management; 

5.2.2 Graphical Representation 

A graphical representation of the thread implementation 
control_laws.control_input and its associated textual representation are shown in 
Table 5-4. No interfaces for the type or other details of the type or implementation 
declarations are shown.  

In the example, the data instance configuration_data is defined as a subcomponent 
of the thread, and the referenced identifier is a data type rather than a data 
implementation. This is legal only if there are no implementation declarations of 
the data type anywhere within the specification. 
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Table 5-4:  A Sample Thread Implementation with One Subcomponent 

 

 

 

 

thread control_laws 
end control_laws; 
 
data static_data 
end static_data; 
 
thread implementation 
control_laws.control_input 
subcomponents 
configuration_data: data 
static_data; 
end control_laws.control_input; 
 

5.2.3 Thread Execution 

A graphical state machine representation of thread execution is shown in Figure 5-2. A 
round-cornered rectangle represents an execution state of a thread or a composite state that 
includes at least one execution state. The ovals are non-execution states. Transitions between 
states are represented by directed arcs. Arcs may originate, join, diverge, or terminate at 
junction points depicted as small circles. 

Instances of a thread can transition between various scheduling states as the result of 
normal execution (e.g., preemption or completion of initialization) or faults/errors. There are 
predefined entry points for each of the thread execution states: Initialize, Compute, and 
Recover. The initialize and compute entry points are used for normal execution.  

If thread execution results in a fault that is detected, the source text may handle the error. If 
the error is not handled in the source text, the thread is requested to recover and prepare 
for the next dispatch. If an error is considered unrecoverable, its occurrence is propagated as 
an event through the thread’s predeclared out event data port Error (not shown in 
Figure 5-2).  All threads have an Error out event data port that allows an 
unrecoverable error with descriptive information to be signaled. 

configuration_data

control_laws.control_input
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Figure 5-2:  Thread Execution State Machine 

5.2.4 Properties 

Predeclared properties support the detailed description of each of the execution phases 
of a thread. There are entry point properties that specify entry into code associated 
with each of these execution phases (Figure 5-2): 

1. Initialize allows threads to perform application specific initialization. 

2. Activate allows actions to restore application states between mode switches. 

3. Compute represents the code to be executed on every thread dispatch. 

4. Recover allows threads to perform fault recovery actions. 

5. Deactivate allows actions to save application states between mode switches. 

6. Finalize executes when thread is asked to terminate as part of a process unload or stop.  

In addition, there are execution time and deadline properties for each of these execution 
phases (not shown in Figure 5-2). 

A thread’s scheduling-related properties include Dispatch_Protocol and Period. 
The supported protocols are  

• periodic: repeated dispatches occurring at a specified time interval (a Period) 

• aperiodic: event-triggered dispatch of threads 

• sporadic: event-driven dispatch of threads with a minimum dispatch separation 

• background: a dispatch initiated once with execution until completion  

Periodic, aperiodic, and sporadic protocols typically involve hard deadlines for the thread. 
The predeclared and user-defined thread properties can be used to specify critical 
runtime aspects of a thread within a system’s architectural representation, enabling the 
early analyses of thread behavior.  
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Table 5-5 is an example of some property associations for a thread. Entry points and 
associated execution times are declared for initialization and nominal execution.  

Table 5-5: Sample Thread Properties 

thread control 
properties 
-- nominal execution properties 
Compute_Entrypoint => "control_ep"; 
Compute_Execution_Time => 5 ms .. 10 ms; 
Compute_Deadline => 20 ms; 
Dispatch_Protocol => Periodic; 
-- initialization execution properties 
Initialize_Entrypoint => "init_control"; 
Initialize_Execution_Time => 2 ms .. 5 ms; 
Initialize_Deadline => 10 ms; 
end control; 

5.2.5 Constraints 
Table 5-6 summarizes the legal subclause declarations for a thread.  
 
Table 5-6: Summary of Permitted Thread Subclause Declarations 

Category Type Implementation 

thread 

Features:  
• server subprogram 
• port 
• provides data access 
• requires data access 
Flow specifications: yes 
Properties yes 

Subcomponents: 
• data 
Subprogram calls: yes 
Connections: yes 
Flows: yes 
Modes: yes 
Properties yes 

 
A thread executes within the protected virtual address space of a process, either as an 
explicitly declared subcomponent or as a subcomponent of a thread group within a 
process. Thus, threads must be contained within (i.e., only be a subcomponent of) a 
process or a thread group. Multiple concurrent threads can exist within a process.  

A summary of the allowed subcomponent relationships and features is included on pages 
117–119 in the Appendix. 
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5.3 Thread Group 
A thread group is a component abstraction for logically organizing thread, data, and 
thread group components within a process. Thread groups do not represent a virtual 
address space or a unit of execution. They provide a foundation for the separation of concerns 
in the design, defining a single reference to multiple threads and associated data (e.g., threads 
with a common execution rate or all threads and data components needed for processing 
input signals).  

5.3.1 Textual Representation 

Table 5-7 is a sample textual specification for a thread group that contains a thread 
component, two data components, and another thread group. Simplified thread 
group type and implementation declarations are shown. For example, only the 
subcomponents declarations part of the control.roll_axis component 
implementation declaration is shown. No details of the thread group 
implementation control_laws.roll are shown. Notice that the data 
subcomponent declarations control_data and error_data reference data 
implementation declarations rather than data type declarations, reflecting the 
flexibility that static data components can be declared at any level of the hierarchy. The 
thread group type declaration for control includes a property association that 
defines a Period of 50 ms. This value is assigned to (inherited by) all of the threads 
contained in the thread group.   

Table 5-7: A Sample Thread Group AADL Textual Specification  

thread group control 
properties  
Period => 50 ms; 
end control; 
-- 
thread group implementation control.roll_axis 
subcomponents 
control_group: thread group control_laws.roll; 
control_data: data data_control.primary; 
error_data: data data_error.log; 
error_detection: thread monitor.impl; 
end control.roll_axis; 
-- 
thread monitor 
end monitor; 
-- 
thread implementation monitor.impl 
end monitor.impl; 
-- 
data data_control 
end data_control; 
-- 
data implementation data_control.primary 
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Table 5-7: A Sample Thread Group AADL Textual Specification 

end data_control.primary; 
-- 
data data_error 
end data_error; 
-- 
data implementation data_error.log 
end data_error.log; 
-- 
thread group control_laws 
end control_laws; 
-- 
thread group implementation control_laws.roll 
end control_laws.roll; 
 

5.3.2 Graphical Representation 

Figure 5-3 contains a graphical representation of the implementation of the thread 
group control.roll_axis shown textually in Table 5-7. Notice that the names 
(identifiers) of the graphical subcomponents of the thread group match those contained 
in the textual representation of the thread group’s implementation declaration. Partial 
declarations are permitted in the initial specification of the system (e.g., subcomponent 
declarations may not have component type or implementation references). This partial 
specification capability is particularly useful during early design stages where details may not 
be known or decided. Component classifier references can be added or completed in 
subcomponent refinements or declared in component implementation extensions. For 
example, in Table 5-7 the declaration for the subcomponent error_detection does not 
have to include the thread component classifier monitor.impl. This reference 
could be added later in an extension of the thread group implementation 
control.roll_axis. 

 
Figure 5-3:  A Sample Thread Group Graphical Representation 

control_group

control. roll_axis

error_detection

control_data
error_data
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5.3.3 Properties 

Predeclared thread group properties include declarations relating to the 
specification of  

• source text 

• timing characteristics 

• relevant memory, processor, and connection bindings13  

For example, there are Actual and Allowed_Processor_Binding properties for 
threads within the thread group, as well as properties that describe thread 
handling during mode changes (e.g., Active_Thread_Handling_Protocol that 
specifies the protocol to use for execution at the time instant of an actual mode switch).14 

5.3.4 Constraints 

A thread group can be a subcomponent only of a process or another thread 
group. Table 5-8 summarizes the permitted elements of a thread group’s type and 
implementation declarations.  

Table 5-8: Elements of a Thread Group Component 

Category Type Implementation 

thread 
group 

Features:  
• server subprogram 
• port 
• provides data access 
• requires data access 
Flow specifications: yes 
Properties yes 

Subcomponents: 
• data 
• thread 
• thread group 
Subprogram calls: no 
Connections: yes 
Flows: yes 
Modes: yes 
Properties yes 

 
A summary of the allowed subcomponent relationships and features is included on pages 
117–119 in the Appendix.  

                                                 
13  The mapping of software to hardware components of a system that are required to produce a 

physical system implementation is called binding [SAE 06a]. 
14  Actual_Processor_Binding, Allowed_Processor_Binding, and 

Active_Thread_Handling_Protocol are predeclared properties in the standard 
predeclared property set AADL_Properties. 
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5.4 Data 
The AADL data abstraction represents static data (e.g., numerical data or source text) and 
data types within a system. Specifically, data component declarations are used to represent 

• application data types (e.g., used as data types on ports and parameters) 

• the substructure of data types via data subcomponents within data implementation 
declarations 

• data instances  

Data types in the application system can be modeled by data component type and 
implementation declarations. A data type (and implementation) declaration can 
be used to define the data associated with ports and parameters. It is sufficient to model an 
application source text data type with a data component type and relevant property 
declarations; it is not necessary to declare a data implementation. Consistency checks 
can be done on the data type associated with connections between ports and parameters. 
Data subcomponent declarations can be used to define the substructure of data types and 
instances. For example, fields of a record can be declared as data subcomponents in a data 
implementation declaration.  

Data instances are represented by data subcomponent declarations within a software 
component or system implementation. Currently data subcomponents cannot be 
declared in subprograms. For example, data instances within source text (e.g., the instance 
variables of a class or the fields of a record) are represented by data subcomponent 
declarations in a data component implementation. These data instances can be 
declared as accessible by multiple components as outlined in Section 8.3 (Subcomponent 
Access). Data component types can have subprograms as features, allowing for 
modeling of abstract data types or classes with access methods. 

5.4.1 Textual Representation 

Sample data type and implementation declarations are shown in Table 5-9 that 
includes three data type declarations and a data implementation declaration 
address.others of the data type declaration address. In addition, a thread 
implementation declaration is shown with data subcomponents that reference the 
data types defined in Table 5-9.  

As the commented description in the table explains, the first part of the table shows the data 
type string used in a port declaration. Specifically, it shows the declaration of a data 
type speed_data_type used to declare the data type for an input data port of the 
process controller. The property association defines the size of the data type as 
16 bits. Only relevant portions of the controller process type declaration are included. 
The second part of the table shows an example of the declaration of the substructure of a 
data implementation. The substructure of the data implementation 
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address.others consists of four data subcomponents with data types string and 
int. In the third and final portion of the table, the thread implementation 
declaration for address_processing.address_lookup includes a specific data 
instance of the data implementation address.others as a subcomponent.  

Notice that the data subcomponent declarations within the data implementation 
address_others reference only the data type declaration. Subcomponents 
subclauses can reference a data type declaration rather than a data implementation 
declaration only if there is no more than one implementation of that data type. 

Table 5-9: Sample Data Component Declarations 

-- string as a data type used in a port declaration -- 
data speed_data_type 
properties 
Source_Data_Size => 16 bits; 
end speed_data_type; 
-- 
process controller 
features  
input: in data port speed_data_type; 
end controller; 
-- 
-- a data implementation with substructure  
data address 
end address; 
-- 
data implementation address.others 
subcomponents 
street : data string; 
streetnumber: data int; 
city: data string; 
zipcode: data int; 
end address.others; 
-- 
-- supporting data declarations 
data string 
end string; 
-- 
-- int as type 
data int 
properties 
Source_Data_Size => 64b; 
end int; 
-- 
-- a data instance of the data implementation “address.others” 
thread address_processing 
end address_processing; 
-- 
thread implementation address_processing.address_lookup 
subcomponents 
address_01: data address.others; 
end address_processing.address_lookup; 
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5.4.2 Graphical Representation 

Figure 5-4 contains graphical and corresponding textual representations for the data 
subcomponents of the data implementation address.others and the thread 
implementation address_processing.address_lookup presented in  

Table 5-9.  

 

Figure 5-4:  Sample Data Component Graphical Representations  

5.4.3 Properties 

The predeclared properties for data components enable specification of 

• source text for the data component 

• name of the relevant data type declaration 

• name of the relevant static data variable in the source text 

• data size 

• concurrency access protocol for shared data  

Base types can be modeled using data types by  

1. defining a new property (such as BaseType) that takes a (data) classifier as 
property value  

2. applying this property to data components 

3. declaring data component base types (such as SignedInt16 or UnsignedInt8) 
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For example, BaseType => classifier BaseTypes::SignedInt16; could be a 
property declared in the data type speed_data_type, where the data type 
SignedInt16 is declared in the package BaseTypes. 

5.4.4 Constraints 

Table 5-10 summarizes the legal elements within data type and data implementation 
declarations. Notice that only data components can be subcomponents within a data 
component.  

A data component can be a subcomponent of a data, thread, thread group, 
process, or system component. A summary of the allowed subcomponent relationships 
and features is included on pages 117–119 in the Appendix.  

Table 5-10: Legal Elements of Data Type and Implementation Declarations 

Category Type Implementation 

data 

Features:  
• subprogram 
• provides data access 
Flow specifications: no 
Properties yes 

Subcomponents: 
• data 
Subprogram calls: no 
Connections: access 
Flows: no 
Modes: yes 
Properties yes 

 
A data subcomponent subclause can reference a data type declaration that does not have a 
data implementation. For example, the reference for the subcomponent street of 
the data implementation address.others shown in Figure 5-4 is to the data 
type string. However, if a data type declaration has more than one associated data 
implementation declaration, both the component type and a component 
implementation must be present in a component classifier reference in order to 
completely identify the classifier.   

5.5 Subprogram 
The subprogram component abstraction represents sequentially executable source text—a 
callable component with or without parameters that operates on data or provides server 
functions to components that call it. A subprogram and its parameter signature are 
declared through component declarations but are not instantiated as subcomponents. Instead, 
calls to subprograms are declared in calls sequences in thread and subprogram 
implementations. More details on calls to subprograms and example calls declarations 
are provided in Section 8.4 (Subprogram Calls). 
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The modeling roles for subprograms include the representation of  

• a method call for operation on data 

• basic program calls and call sequencing 

• remote service/procedure calls 

These calls can include data transfer into or out of the subprogram. Parameters, declared 
as features of a subprogram, provide the interface for the transfer of data into or out of 
a subprogram. 

5.5.1 Textual Representation 

Table 5-11 is an example of a subprogram representing a service (method) call for 
operation on data. It shows the relevant component type and implementation 
declarations and the declaration of that subprogram as one of the features 
scale_acc_data within a data component accelerometer_data. The feature 
scale_acc_data represents an entry point into source text that operates on the data 
component accelerometer_data.  

Table 5-11: Subprogram Textual Representation 
 
subprogram scale_data 
end scale_data; 
subprogram implementation scale_data.scale_sensor_data 
end scale_data.scale_sensor_data; 
data accelerometer_data 
features  
scale_acc_data: subprogram scale_data.scale_sensor_data; 
end accelerometer_data; 
process sensor_systems 
end sensor_systems; 
process implementation sensor_systems.sensor_processing 
subcomponents  
acc_data: data accelerometer_data; 
scale_it: thread process_data.scale; 
end sensor_systems.sensor_processing;  
 

5.5.2 Graphical Representation 

Figure 5-5 contains graphical and corresponding textual representations for the process 
implementation sensor_systems.sensor_processing shown in Table 5-11. 
The subprogram scale_acc_data is represented by an oval that adorns the data 
subcomponent acc_data of the process implementation 
sensor_systems.sensor_processing. The thread scale_it is not shown in 
the figure. 
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acc_data

sensor_systems.sensor_processing

scale_acc_data

 

Figure 5-5: Subprogram Graphical Representation 
 

Table 5-12 shows both textual (upper portion) and graphical (lower portion) representations 
of an example of a subprogram abstraction representing a server subprogram.  

In this textual representation, the two process implementation declarations 
(control.temp_control and manage_data.manage_temp) are bound to separate 
memory components (e.g., memories associated with individual processing nodes on a 
distributed computing network). The thread implementation 
control_law.linear within the control.temp_control process 
implementation calls the subprogram acquire.temp that is declared as a 
server subprogram feature in the thread type read.   

In the graphical representation of the specification shown in the lower portion of Table 5-12,  
the subroutine entry point read_it is identified as a feature of the subcomponent thread 
temp_reader. In addition, the call get_temp is shown in the thread 
control.temp_control, and the binding of this call to the read_it subprogram 
is shown with an arrowed line. This call can be a remote call, where the server 
subprogram thread temp_reader is bound to a separate processor than the 
calling thread linear01. More details on subprogram calls and a remote client-
server example can be found in Section 8.4 (Subprogram Calls). 

Table 5-12: Example Textual and Graphical Subroutine Declarations 

process control 
end control; 
-- 
process implementation control.temp_control 
subcomponents 
linear01: thread control_law.linear; 
end control.temp_control; 
-- 
thread control_law 
end control_law; 
-- 
thread implementation control_law.linear 
calls { 
 get_temp: subprogram acquire.temp; }; 
end control_law.linear; 
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Table 5-12: Example Textual and Graphical  Subroutine Declarations (cont.) 

process manage_data 
end manage_data; 
-- 
process implementation manage_data.manage_temp 
subcomponents 
temp_reader: thread read.read_temp; 
end manage_data.manage_temp; 
-- 
thread read 
features 
read_it: server subprogram acquire.temp; 
end read; 
-- 
thread implementation read.read_temp 
end read.read_temp; 
-- 
subprogram acquire 
end acquire; 
-- 
subprogram implementation acquire.temp 
end acquire.temp; 

linear01

control.temp_control

temp_reader 

manage_data.manage_temp

read_it

get_temp

server
subprogram call

 

5.5.3 Properties 

Predeclared subprogram properties include declarations relating to the  

• source text for the subprogram 

• memory requirements 

• memory binding 

• characteristics related to calls into the subprogram 
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5.5.4 Constraints  

Table 5-13 summarizes the permitted elements of a subprogram’s component type and 
implementation declarations. 

Table 5-13: Restrictions on Subprogram Declarations 

Category Type Implementation 

subprogram 

Features:  
• out event port 
• out event data port 
• port group 
• requires data access 
• parameter 
Flow specifications: yes 
Properties yes 

Subcomponents: 
• none 
Subprogram calls: yes 
Connections: yes 
Flows: yes 
Modes: yes 
Properties yes 

 

The interactions of subprograms are constrained to  

• event-based interfaces: out event port, out event data port, and a port 
group consisting only of these event port types  

• data interfaces: through parameters of calls to and returns from the subprogram  

Out event ports and out event data ports support modeling subprograms that raise an 
event (with or without associated data) that must be passed through an enclosing thread 
to other components. A subprogram may require access to data but cannot contain static 
data subcomponents. 
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6 Execution Platform Components   

Execution platform components represent computational and interfacing resources within a 
system. This representation includes complex hardware and associated software systems. For 
example, in one model a Linux computing resource can be represented as a processor 
and, in an implementation model of the processor, as a system with Linux 
software mapped onto an execution platform processor.  

There are four categories of execution platform components in the AADL: 

1. processor (Section 6.1): represents components that execute threads 

2. memory (Section 6.2): represents components that store data and code 

3. bus (Section 6.3): represents components that provide access among execution platform 
components 

4. device (Section 6.4): represents components that interface to the external environment 

Within an AADL specification, software components must be mapped onto execution 
platforms through binding relationships. These bindings define where code is executed and 
data and executable code are stored within a system. For example, a thread must be bound 
to a processor for execution and a process must be bound to memory. Similarly, 
connections among components within a system must be bound to appropriate execution 
platform components (e.g., a simple connection is bound to a single bus or a connection 
within a complex distributed system is bound to a sequence of buses and intermediate 
processors and devices). Additional information on binding is in Section 7 (System 
Structure and Instantiation).   

A collection of execution platform components contained within an AADL system 
abstraction can be used to model complex physical computational resources. For example, 
memory that represents a hard disk and a processor that supports software execution within a 
system can model a database server. Similarly, a collection of software and execution 
platform components (i.e., a system implementation) can represent a virtual machine 
layer within a layered system architecture model. 

6.1 Processor 
A processor is an abstraction of hardware and associated software that is responsible for 
scheduling and executing threads. Processors can execute threads that are declared in 
application software systems or threads that reside in components accessible from those 
processors.  
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Processors themselves may have embedded software (e.g., an operating system) that 
implements scheduling and other capabilities that support thread execution. Alternatively, 
separate software components or other software virtual machines can supply this support, 
provided that software is bound to memory that is accessible by the processor.  

6.1.1 Textual and Graphical Representations 

Table 6-1 shows a type and implementation declaration for a processor. Both textual 
and corresponding graphical representations are shown. In this example, a single 
processor system with memory contained inside of the processor is shown. No 
other interconnections are required. 

Table 6-1: A Sample Processor Textual and Graphical Representation  
 
processor Intel_Linux 
properties  
Hardware_Source_Language=> VHDL; 
Hardware_Description_Source_Text  => 
"intel_vhdl_1, intel_vhdl_2"; 
end Intel_Linux; 
-- 
processor implementation 
Intel_Linux.Intel_Linux_01 
subcomponents 
HSRAM: memory RAM.Intel_RAM;   
end Intel_Linux.Intel_Linux_01; 
-- 
memory RAM 
end RAM; 
-- 
memory implementation RAM.Intel_RAM 
end RAM.Intel_RAM; 

 

 

 
In the textual representation, the properties subclauses define the hardware description 
language (Hardware_Source_Language) and the files that contain the source text for 
the hardware description (Hardware_Description_Source_Text). The 
processor implementation declaration of Intel_Linux.Intel_Linux_01 
includes a single memory subcomponent HSRAM. The memory subcomponent’s type and 
implementation declarations are shown.  

The corresponding graphical representations of type and implementation are shown to 
the right of the textual representation in Table 6-1. The nesting of the memory graphic 
(labeled HSRAM) within the processor graphic shows containment. The optional bold line 
(discussed in Section 4.3) is not used for the processor implementation graphic.  
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6.1.2 Properties 

Predeclared processor properties can be used in a processor declaration. In 
addition to the hardware description properties included in the example from Table 6-1, 
other properties include a Scheduling_Protocol property that must have a 
value if threads are bound to the processor and an Allowed_Dispatch_Protocol 
property that specifies the dispatch protocols supplied by the processor.15  

6.1.3 Constraints  

Table 6-2 summarizes the permitted elements of a processor’s type and implementation 
declarations.  

Table 6-2: Summary of Permitted Processor Declarations 

Category Type Implementation 

processor 

Features:  
• server subprogram 
• port 
• port group 
• requires bus access  
Flow specifications: yes 
Properties yes 

Subcomponents: 
• memory 
Subprogram calls: no 
Connections: no 
Flows: yes 
Modes: yes 
Properties yes 

 
A processor can only be a subcomponent of a system component. A summary of the 
allowed subcomponent relationships and features is included on pages 117–119 in the 
Appendix.  

6.2 Memory 
Memory abstractions represent storage components for data and executable code (i.e., 
subprograms, data, and processes are bound to memory components). Memory 
components include randomly accessible physical storage (e.g., RAM, ROM) or complex 
permanent storage such as disks or reflective memory. Since they have a physical runtime 
presence, memory components have properties such as word size and word count.  

The memory component can represent memory inside of a processor or a separate 
execution platform unit that must be connected to a processor through a bus. Memory banks 
can be modeled as a single or composite memory unit. 

                                                 
15  There is a standard predeclared property set named AADL_Properties that is a part of every 

AADL specification [SAE 06a]. 
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6.2.1 Textual and Graphical Representations 

An example memory declaration and its graphical representation are shown in Table 6-3. In 
this example, a memory of the type RAM is declared with a single feature bus01 that 
establishes that all instances of RAM require access to the bus membus.hsbus. No explicit 
properties for this type are declared. The type and implementation declarations for 
the requires bus access to bus01 are shown at the end of the listing. 

The memory implementation RAM.compRAM declares that this implementation 
of the memory type RAM includes memory subcomponents HSRAM01 and SRAM01. No 
modes or properties are declared. The subcomponents of the memory 
implementation RAM.compRAM are declared as implementations of a common type 
XRAM. An expanded memory composition can be used to model a complicated memory 
bank. These examples show that memory can only contain other memory components and 
must be connected to a bus unless it is enclosed in a processor.  

Table 6-3: A Sample Memory Textual and Graphical Representation  

memory RAM 
features  
bus01: requires bus access membus.hsbus; 
end RAM; 
-- 
memory implementation RAM.compRAM 
subcomponents  
HSRAM01: memory XRAM.HSRAM; 
SRAM01: memory XRAM.SRAM; 
end RAM.compRAM; 
-- 
memory XRAM 
end XRAM; 
-- 
memory implementation XRAM.HSRAM 
end XRAM.HSRAM; 
-- 
memory implementation XRAM.SRAM 
end XRAM.SRAM; 
-- 
bus membus 
end membus; 
-- 
bus implementation membus.hsbus 

end membus.hsbus; 
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6.2.2 Properties 

Predeclared memory properties include 

• memory access protocol 

• word size 

• other important descriptive characteristics of storage units  

• The default value for memory access (Memory_Protocol) is read–write but can be 
associated with the values of read only or write only. 

6.2.3 Constraints  

Table 6-4 lists the permitted elements of memory type and implementation 
declarations.  

Table 6-4: Summary of Permitted Memory Declaration Subclauses 

Category Type Implementation 

memory 

Features 
• requires bus access  
Flow specifications: no 
Properties yes 

Subcomponents: 
• memory 
Subprogram calls: no 
Connections: no 
Flows: no 
Modes: yes 
Properties yes 

 
A memory component can only be contained within a memory, processor, or system 
component. Moreover, an individual memory component must be contained in a 
processor, declared a subcomponent of a memory unit, or connected to a processor 
through a bus. A summary of the allowed subcomponent relationships and features is 
included on pages 117–119 in the Appendix.  

6.3 Bus 
A bus represents hardware and associated communication protocols that enable interactions 
among other execution platform components (i.e., memory, processor, and device). 
For example, a connection between two threads, each executing on a separate 
processor, is over a bus between those processors. This communication is specified 
using access and binding declarations to a bus. Buses can be connected directly to 
other buses to represent complex inter-network communications. Thus, connections between 
components can be bound to a sequence of buses or a sequence of buses with intervening 
processors. 
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6.3.1 Textual and Graphical Representations 

Since a bus acts only as a shared component, its interactions (features) are specified as 
bus access features in component type declarations. For example, a processor 
requires access to a bus in order to communicate with memory that contains the threads 
executing on that processor. Similarly, a bus may require access to another bus. 
Alternatively, a system may provide access to one of its bus subcomponents.  

Table 6-5 shows a portion of an AADL textual specification and its corresponding graphical 
representation. Included in the example are a processor type declaration for 
Intel_Linux and two bus type declarations for X_1553 and ARINC_629. The 
processor type declaration for Intel_Linex includes a requires bus access 
declaration for the bus X_1553.HS_1553 and the bus type declaration X_1553 includes 
a requires bus access for the bus ARINC_629.HS_629. These required accesses 
are shown in the graphic on the right side of Table 6-5. The implementation declarations 
for both buses are also shown in the textual specification in Table 6-5. 

Table 6-5: A Sample Bus Specification: Textual and Graphical Representation 

processor Intel_Linux 
features  
A1553: requires bus access X_1553.HS_1553; 
end Intel_Linux; 
-- 
bus X_1553 
features  
A629: requires bus access  
ARINC_629.HS_629; 
end X_1553; 
-- 
bus implementation X_1553.HS_1553 
end X_1553.HS_1553; 
-- 
bus ARINC_629 
end ARINC_629; 
-- 
bus implementation ARINC_629.HS_629 
end ARINC_629.HS_629; 
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6.3.2 Properties 

There are a number of predeclared properties that can be used to specify important bus 
characteristics: 

• transmission characteristics such as allowed connection and access protocols, message 
sizes, transmission time, propagation delay 

• hardware source language descriptions 

• data movement time characteristics such as the time to move a byte or block of data and 
any fixed data movement overhead time 
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6.3.3 Constraints  

Table 6-6 summarizes the permitted elements of bus type and implementation 
declarations.  

Table 6-6: Summary of Permitted Bus Declaration Subclauses 

Category Type Implementation 

bus 

Features 
• requires bus access  
Flow specifications: no 
Properties yes 

Subcomponents: 
• None 
Subprogram calls: no 
Connections: no 
Flows: no 
Modes: yes 
Properties yes 

 
A bus component can only be a subcomponent of a system component. A summary of the 
allowed subcomponent relationships and features is included on pages 117–119 in the 
Appendix.  

6.4 Device 
Device abstractions represent entities that interface with the external environment of an 
application system. Those devices often have complex behaviors. They may have internal 
processors, memory, and software that are not explicitly modeled. Alternatively, they may 
require driver software that is executed on an external processor. A device’s external driver 
software may be considered part of a processor’s execution overhead, or it may be treated as 
an explicitly declared thread with its own execution properties. Examples of devices 
are sensors and actuators or standalone systems such as a Global Positioning System.  

6.4.1 Textual and Graphical Representations 

A device can interact in complex ways with other components. For example, a device 
may have a physical connection to a processor via a bus as well as logical connections 
through ports to application software components. As with all logical connections among 
components residing on distinct execution platform elements, these logical connections must 
be supported by (be bound to) physical connections.  

Table 6-7 shows an excerpt from an AADL specification that describes a device 
Roll_Rate_Sensor interacting through a bus with a processor Intel_RTOS. The 
processor executes the device driver for the Roll_Rate_Sensor. The requirement for 
bus access is specified in the type declaration for Roll_Rate_Sensor. Similarly, the 
need for bus access is declared within the processor type declaration for 
Intel_RTOS. Notice that the out data port declared on the roll rate sensor device 
provides the rate data from the sensor. A device can be used to represent a more complex 
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physical element, such as an engine where the ports can represent the engine’s sensors and 
actuators. 

Table 6-7: A Sample Device Specification: Textual and Graphical Representation 

processor Intel_RTOS 
features  
A1553: requires bus access  
X_1553.HS_1553; 
end Intel_RTOS; 
-- 
device Roll_Rate_Sensor 
features 
A1553: requires bus access    
X_1553.HS_1553; 
raw_roll_rate: out data port; 
end Roll_Rate_Sensor; 
-- 
bus X_1553 
end X_1553; 
-- 
bus implementation X_1553.HS_1553 
end X_1553.HS_1553; Intel_RTOS

X_1553.HS_1553

Roll_Rate_Sensor

 

 
Devices can be viewed from different perspectives. They are integral to the execution 
environment, both in terms of the application computing system (software and execution 
platform components) and the physical environment in which the application system exists. 
Thus, a device can be viewed as  

• a physical component that interfaces with the application software through ports (and 
port groups), as shown in Figure 6-1 

• part of the application system interacting with execution platform components and the 
application system, as shown in Figure 6-2 

• a unit in the environment that is accessed or controlled by the application system, as 
shown in Figure 6-3  

The complexity and nature of interactions of a device depend upon how it is included in 
the architecture. If a device is included as part of the execution platform system, there are 
numerous logical connections to the application system. If it is included as part of the 
application system, there are physical connections via bus access across the system 
hierarchy. In general, it is preferable to place the device declaration with the application 
code, since the emphasis is on its interaction with the application and the number of 
connections to the execution platform is then limited to the bus. 
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Figure 6-1:  A Device as Part of the Physical Hardware 
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Figure 6-2:  A Device as Part of the Application System  
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Figure 6-3:  A Device as Part of the Controlled Environment  

The data port, port group, and connections abstractions—along with their 
graphical representations—depicted in Figure 6-1 through Figure 6-3 are discussed in Section 
8: Component Interactions. 

6.4.2 Properties 

Device properties encompass the dual software and hardware character of a device.   

• software-specific properties  

- source code files 
- source code language 
- code size 
- execution platform binding properties  

• execution platform (hardware) properties, such as those specifying the files that 
contain the hardware description language for the device and the language used for that 
description  

• properties for specification of the thread properties of the device software 
executing on a processor, such as dispatch protocols and execution time-related 
properties 
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6.4.3 Constraints 

Table 6-8 summarizes the permitted elements of device type and implementation 
declarations. A device component can only be a subcomponent of a system component. A 
summary of the allowed subcomponent relationships and features is included on pages 117–
119 in the Appendix. 

Table 6-8: Summary of Permitted Device Declaration Subclauses 

Category Type Implementation 

device 

Features 
• port 
• port group 
• server subprogram 
• requires bus access 
Flow specifications: yes 
Properties yes 

Subcomponents: 
• none 
Subprogram calls: no 
Connections: no 
Flows: yes 
Modes: yes 
Properties: yes 
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7 System Structure and Instantiation 

This section presents the language abstractions for structuring and integrating AADL 
elements into a complete representation of an application system that includes a system 
component, component bindings, source code elements, and instantiation. 

7.1 System Abstraction 
The system abstraction represents a composite of software, execution platform, or system 
components. System abstractions can be organized into a hierarchy that can represent 
complex systems of systems as well as the integrated software and hardware of a dedicated 
application system (e.g., flight navigation system or database server). Used early in the 
modeling process to generically represent a component, system components can be formed 
into a model that is transformed later—some system components being translated into 
process components and contained components being translated into thread and 
thread group components. 

7.1.1 Textual and Graphical Representations 

A system can consist of various combinations of software, execution platform, and system 
components. For example, a system may consist only of software (i.e., process or data 
components) or execution platform components. Thread and thread group components 
cannot be subcomponents of a system, since they must be contained within a process or 
a thread group.  

The composition of a system implementation is declared through subcomponent 
declarations. Table 7-1 provides textual and graphical representations of a system 
implementation of the system type integrated_control. The details of the type 
declaration are not included. The explicit subcomponent declarations are shown in the 
system implementation declaration of 
integrated_control.integrated_control_system. However, many of the 
other subclauses are omitted. The supporting declarations are not shown (e.g., the process 
type declaration for the process type controller). In the graphical portrayal of the 
system implementation, the subcomponents of integrated_control_system 
of the type integrated_control are shown. 
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Table 7-1: A Sample System Specification: Textual and Graphical Representation 

system integrated_control 
end integrated_control; 
-- 
system implementation integrated_control.integrated_control_system 
subcomponents 
control_process: process controller.speed_control; 
set_point_data: data set_points; 
navigation_system: system core_system.navigation; 
real_time_processor: processor rt_fast.rt_processor; 
hs_memory: memory rt_memory.high_speed; 
high_speed_bus: bus network_bus.HSbus; 
end integrated_control.integrated_control_system; 
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7.1.2 Constraints 

Table 7-2 summarizes the permitted elements of a system type and implementation 
declarations. Notice that a system cannot contain a thread or thread group; they must 
be contained in a process. A system can be a subcomponent only of another system 
component. A summary of allowed subcomponent relationships and features is included on 
pages 117–119 in the Appendix.  

Table 7-2: Summary of Permitted System Declarations 

Category Type Implementation 

system 

Features:  
• server subprogram 
• port 
• port group 
• provides data access 
• provides bus access 
• requires data access 
• requires bus access 
Flow specifications: yes 
Properties yes 

Subcomponents: 
• data 
• process 
• processor 
• memory 
• bus 
• device 
• system 
Subprogram calls: no 
Connections: yes 
Flows: yes 
Modes: yes 
Properties yes 

7.2 System Instance 
A system instance represents the runtime architecture of an operational physical system. 
That physical system may be a stand-alone system or a system of systems. A system 
instance consists of application software components and execution platform components. 
Component type and component implementation declarations are architecture blueprints 
that define the structure and connectivity of a physical system architecture. They must be 
instantiated to create a complete system instance. A system instance that represents the 
containment hierarchy of the physical system is created by instantiating a top-level system 
implementation and then recursively instantiating the subcomponents and their 
subcomponents.   

Once instantiated, the application component instances can be bound to execution platform 
components (i.e., each thread is bound to a processor; each source text, data 
component, and port is bound to memory and each connection is bound to a bus if 
necessary). There is no explicit textual representation for system instances. Instead, 
system instances are created and stored as system instance models in XML. System 
instance models can be operated on by analysis and generation tools. 

In a fully specified system, the application components are modeled to the level of threads and 
possibly refined to subprogram calls within threads. Similarly a fully specified 
execution platform includes processors to execute application code, memory to store 
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application code and data, devices that represent the physical environment of the embedded 
application, and buses that connect these components. Certain system analyses require fully 
specified system models. For example, scheduling analysis cannot be performed until all the 
application threads are specified and are bound to processors.  

Early in the development process it is desirable to have partially specified system models and 
be able to instantiate them for analysis. For example, we may represent an application 
system as a collection of interacting subsystems without providing details of their 
implementation. Subsystems are modeled as system components or process components. 
We can instantiate this partial application system together with an execution platform 
model into a partial system instance model. We can assign resource budgets in terms of 
CPU cycles and memory requirements to the application subsystems and resource capacities 
to the execution platform. Given this data we can analyze various bindings of application 
components to the execution platform and ensure that the budgets do not exceed the capacity. 
We can also add flow specifications to individual subsystem components and end-to-end 
flows to the application system. Based on these flow specifications, flow analyses such as 
an end-to-end response time analysis can be performed without a fully detailed system 
model.16 

7.3 Binding to Execution Platform Components 
For a complete system specification (one that can be instantiated), software components 
must be bound to appropriate execution platform components. For example, threads must 
be bound to processing elements and processes must be bound to memory. Similarly, 
interprocessor connections must be bound to buses, and subprogram calls must be 
bound to their server subprogram. These bindings are defined through property 
associations.  

There are three categories of binding properties that provide support for declaring:  

1. allowed bindings 

2. actual bindings 

3. identified available memory and processor resources  

For example, there is an Allowed_Memory_Binding predeclared property that 
identifies possible memory components for binding and an Actual_Memory_Binding 
predeclared property that specifies the memory component to which code and data from 
source text is bound. The Available_Memory_Binding property specifies the set of 
contained memory components that are available for the binding to a system’s internal 
components from outside the system.17

                                                 
16  For more information on analysis, see AADL publications and presentations at www.aadl.info.  
17  Allowed_Memory_Binding and Actual_Memory_Binding are predeclared properties in 

the property set AADL_Properties that is part of every AADL specification [SAE 06a]. 
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8 Component Interactions 

Representations of the interactions among components are restricted to defined connections 
established between interface elements. Connections establish one of the following 
interactions: 

• port connections (Sections 8.1 and 8.2): These are explicit relationships declared between 
ports or between port groups that enable the directional exchange of data and 
events among components.  

• component access connections (Section 8.3): These are explicit declarations that enable 
multiple components access to a common data or bus component. 

• subprogram calls (Section 8.4): These are explicit declarations within component 
implementations that enable synchronous call/return access to subprograms. 

• parameter connections (Section 8.5): These are relationships among data elements 
associated with subprogram calls. 

Interface elements are declared within the features section of a component type 
declaration. Paths of interaction (i.e., connections) between interface elements are declared 
explicitly within component implementations.  

8.1 Ports 
A port represents a communication interface for the directional exchange of data, 
events, or both (event data) between components. Ports are classified as 

• data port: interfaces for typed state data transmission among components without 
queuing  
Data ports are represented by typed variables in source text. The structure of the 
variable/array is defined by the data type [data classifier] on the ports. 
Connections between data ports are either immediate or delayed. 

• event port: interfaces for the communication of events raised by subprograms, 
threads, processors, or devices that may be queued  
Examples of event port use include: triggers for the dispatch of an aperiodic 
thread, initiators of mode switches, and alarm communications. Events such as alarms 
may be queued at the recipient, and the recipient may process the queue content. Event 
ports are represented by variables within source text that are associated with runtime 
service calls. 

• event data port: interfaces for message transmission with queuing  
These interfaces enable the queuing of the data associated with an event. An example 
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of event data port use is modeling message communication with queuing of 
messages at the recipient. Message arrival may cause dispatch of the recipient and allow 
the recipient to process one or more messages. These ports are represented by port 
variables in source text that are associated with relevant runtime service calls.  

8.1.1 Port Declarations  

Ports are declared as features in component type declarations. Ports are directional. An 
out port represents a component’s output and an in port represents a component’s input. An 
in out port represents input and output to a component that maps to a single static variable. 
An in out data port represents both an incoming and an outgoing port such that the 
outgoing and incoming connections can be made to different components.  

The graphical representations for data ports, event ports, and event data ports are summarized 
in Figure 8-1.  

out

in

in out

Event port

Event data port

Data port

 

Figure 8-1: Port Graphical Representations 

Table 8-1 has an example textual specification and corresponding graphical representation 
that includes port and port connection declarations. Within component type specifications, 
appropriate ports declarations are grouped together in the features section. Supporting 
data type definitions are included at the end of the table. Many of the other details of the 
specification are not shown. For example, declarations of data types used in data port 
declarations are not included, as in the declaration of the port c_data_out where the 
declaration of the data type processed_data is not shown.  

In addition to user-defined ports, there are implicitly declared ports for threads.18 For 
example, Error is an implicitly declared out event data port for all threads and 
may be declared as part of a connection involving a thread. In addition, there is an implicit 
Complete out event port that, if connected, raises an event, signaling the 
completion of a thread. Implicit ports can be used directly in connection declarations. They 
are not included in a features subclause. 
                                                 
18  The predeclared ports for a thread are Dispatch, Complete, and Error [SAE 06a]. 



Section 8: Component Interactions 
 

58  CMU/SEI-2006-TN-011 

8.1.2 Port Connections  

Connection declarations between ports are also shown in Table 8-1. A connection declaration 
consists of  

1. optional identifier (name) 
2. colon (:) 
3. port connection descriptor (e.g., data port) 
4. source port 
5. connection symbol (e.g., the symbol -> for an immediate connection)  
6. destination port  

The pattern for port connection textual declaration is shown in the box below:  

name : [descriptor] [source port] [connection symbol] [destination port] 

Graphically, connections are solid lines between the ports involved in the connection, 
sometimes with adorned with double cross hatching. See Section 8.1.5 (Immediate and 
Delayed Communications).  

For example, in Table 8-1, the connection c_data_transfer is between the out data 
port c_data_out of the thread input (written as input.c_data_out) and the 
in data port c_data_in of the thread control_plus_output (written as 
control_plus_output.c_data_in). The connections declaration brake_in: 
event port brake -> input.brake_event; connects the in event port 
brake of process implementation control.speed_control to the in 
event port brake_event of the thread subcomponent input. A name for the 
data port connection between control_plus_output.c_cmd_out and 
throttle_cmd is not included in this example. The implicit event data port 
Error is used in the connection error_connection. It is connected to the out event 
data port Error_Signal but not declared explicitly as a feature in the originating 
thread. 

Table 8-1: Sample Declarations of Data, Event, and Event Data Ports 

process control 
features 
speed: in data port raw_speed; 
brake: in event port; 
set_speed: in event data port raw_set_speed; 
throttle_cmd: out data port command_data; 
Error_Signal: out event data port; 
end control; 

thread control_in 
features 
speed_in_data: in data port raw_speed; 
brake_event: in event port; 
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Table 8-1:  Sample Declarations of Data, Event, and Event Data Ports (cont.) 

set_speed_edata: in event data port raw_set_speed; 
c_data_out: out data port processed_data; 
end control_in; 
 
thread control_out  
features 
c_data_in: in data port processed_data; 

c_cmd_out: out data port command_data; 
end control_out; 
 

process implementation control.speed_control 
subcomponents 
input: thread control_in.input_processing_01; 
control_plus_output: thread control_out.output_processing_01; 
connections 

speed_in: data port speed -> input.speed_in_data; 
brake_in: event port brake -> input.brake_event; 
set_speed_in: event data port set_speed -> input.set_speed_edata; 
c_data_transfer: data port input.c_data_out ->   
                                     control_plus_output.c_data_in; 

data port control_plus_output.c_cmd_out -> throttle_cmd; 
error_connection: event data port input.Error -> Error_Signal; 
end control.speed_control; 

thread implementation control_in.input_processing_01 
end control_in.input_processing_01; 

thread implementation control_out.output_processing_01 
end control_out.output_processing_01; 

data raw_speed 
end raw_speed; 

data raw_set_speed 
end raw_set_speed; 

data command_data 
end command_data; 

data processed_data 
end processed_data; 

control.speed_control

input control_
plus_output

speed throttle_cmd

brake

set_speed
Error

Error_Signal

c_data_out

c_data_in c_cmd_out

speed_in_data

brake_event

set_speed_edata
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8.1.3 Connections in System Instance Models 

A connection instance represents the actual flow of data and control between components of 
a system instance model.  In case of a fully specified system, this flow is a transfer 
between two thread instances, a thread instance and a processor instance, or a 
thread instance and a device instance. The data flow may be in either direction. 
However, at least one thread must be included. In the AADL standard, connection 
instances in a fully specified system model are called semantic connections.   

In the case of a partially specified system, the system instance model is expanded through 
the component hierarchy to the subcomponents for which no implementation detail is 
provided, regardless of their component category. In this case, connection instances may be 
between ports of system component instances or process component instances. 
According to the AADL standard, those connection instances are not semantic connections, 
but they are essential to certain analyses of partial system instance models.   

Connection instances that are semantic connections are illustrated in Figure 8-2. In this 
figure, data is communicated between two threads in different processes. The data 
connection between the two threads is expressed by connection declarations that must follow 
the component hierarchy. In other words, there is a connection declaration from the original 
thread to its enclosing process, from that process to the second process, and from 
that process to the contained destination thread. Note that threads cannot arbitrarily 
communicate with other threads in the system. The enclosing process determines, through 
the ports in its type declaration and the connection declarations to those ports, which data 
from its threads should be passed on to threads in other processes.   

In a system instance model, the sequence of data connection declarations from a thread 
to its enclosing process, to the second process, and to the thread contained in the 
second process results in a connection instance. If two threads are subcomponents 
within the same process or thread group, the connection instance is represented by a 
single connection declaration between those threads in the enclosing component 
implementation. While there may be a series of port-to-port connections involved in a 
data transfer (system instance connection) between two threads, data is transferred 
directly from the sending thread to the receiving thread. From an application source 
code perspective, the sending thread assigns a value to a variable/array and the receiving 
thread receives that value in a corresponding variable/array. 
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Application System

read_thread

collect_data_process

scale_thread

scale_data_process

connection declarations

semantic connection
 

Figure 8-2:  A Semantic Connection between Thread Instances 

Figure 8-3 illustrates a connection instance in a partial system instance model. In this 
model, the data collection process and the data scaling process have not been 
detailed out. The data connection between the two processes results in a connection 
instance in the system instance model. This connection instance is not considered a 
semantic connection according to the AADL standard, but the connection instance can be 
used in a fault propagation analysis or flow analysis of this partially specified system. 

Application System

collect_data_process scale_data_process

connection declaration

connection instance  
Figure 8-3:  A Connection Instance in a Partially Specified System Instance Model 

8.1.4 Port Communication Timing 

The timing of system instance data communication via ports depends upon the type of 
components involved (i.e., thread, device, or processor) and the nature of their 
connections. Communication timing is expressed in terms of execution completion, 
deadline, and dispatch times. For data port transfer out of threads, the data is ready for 
transfer at the completion of the thread, regardless of dispatch or scheduling 
characteristics. The timing of the delivery of the data to a receiving component is 
established by the nature of the data connection between them—immediate or delayed.  

For event and event data ports, a source thread executes a Raise_Event call. 
This call results in the immediate transfer of control for an event port and the immediate 
transfer of both control and data for an event data port. 
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8.1.5 Immediate and Delayed Communications 

The type of connection between thread data ports establishes specific timing 
semantics for data that is transferred between originating and terminating threads. Data port 
connections can be immediate or delayed. This section presents the basic timing 
semantics for these inter-thread connections. It does not address the potential impact of 
bus speeds, communication protocols, or partitions on these connections. 

For immediate connections, data transmission is initiated when the source thread 
completes and enters the suspended state. The value delivered to the in data port of a 
receiving thread is the value produced by the sending thread at its completion. For an 
immediate connection to occur, the threads must share a common (simultaneous) dispatch. 
However, the receiving thread’s execution is postponed until the sending thread has 
completed its execution. This aspect can be seen in Figure 8-4, where the immediate 
connection specifies that the thread control must execute after the thread 
read_data, within every 50 ms period. In addition, the value that is received by the 
thread control is the value output by the most recent execution of the thread 
read_data.  

read_data control

20Hz 20Hz

Timeline
Ti (20Hz) Ti+2 (20Hz)Ti+1 (20Hz)

read_data
control

Immediate connection 
dictates execution order

read_data
control

read_data
control

 

Figure 8-4:  An Immediate Connection 

For the graphical timelines in Figure 8-4 through Figure 8-9, a horizontal bar above the 
timeline that is labeled with a thread name represents the execution time of that thread. 
The left edge represents the start and the right edge represents the termination of the 
thread’s execution. A solid or segmented arrow between thread execution bars 
represents a data transfer between threads. A segmented arrow represents a delayed (e.g., 
Figure 8-5) or a repeat transfer (e.g., Figure 8-6). 

For the two threads illustrated in Figure 8-4, a partial textual specification is shown in Table 
8-2. The connection immediate_C1 is declared as immediate using the single-headed 
arrow symbol (->) between the out data port and in data port. Notice the 
Period property association (50 ms) within each of the thread type declarations. 
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Table 8-2: AADL Specification of an Immediate Connection  

thread read_data 
features 
in_data: in data port; 
out_data: out data port; 
properties  
Period => 50 ms; 
end read_data; 
-- 
thread basic_control 
features 
in_data: in data port; 
out_data: out data port; 
properties  
Period => 50 ms; 
end basic_control; 
-- 
process implementation control_speed.impl 
subcomponents 
read_data: thread read_data; 
control: thread basic_control; 
connections 
immediate_C1: data port read_data.out_data -> control.in_data; 
end  control_speed.impl; 

 
For a delayed port connection, the value from the sending thread is transmitted at its 
deadline and is available to the receiving thread at its next dispatch. For delayed port 
connections, the communicating threads do not need to share a common dispatch. In this 
case, the data available to a receiving thread is that value produced at the most recent 
deadline of the sending thread. If the deadline of the sending thread and the dispatch of 
the receiving thread occur simultaneously, the transmission occurs at that instant. The 
impact of a delayed connection can be seen in Figure 8-5, where the thread control 
receives the value produced by the thread read_data in the previous 50 ms frame. A 
shown in Figure 8-5, a delayed connection is symbolized graphically by double cross 
hatching on the connection arrow between the ports. 

For the two threads illustrated in Figure 8-5, a partial textual specification is shown in Table 
8-3. This specification has some differences from the one in Table 8-2: the connection 
delayed_C1 is declared as delayed using the double-headed arrow (->>) and the Period 
property association is declared in a properties subclause within the process. This 
association specifies that the value of 50 ms is the period of contained threads unless 
overridden within an individual thread’s declaration. 
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Figure 8-5:  A Delayed Connection 

Table 8-3: AADL Specification of a Delayed Connection 

Thread read_data 
features 
in_data: in data port; 
out_data: out data port; 
end read_data; 
-- 
thread basic_control 
features 
in_data: in data port; 
out_data: out data port; 
end basic_control; 
-- 
process implementation control_speed.impl 
subcomponents 
read_data: thread read_data; 
control: thread basic_control; 
connections 
delayed_C1: data port read_data.out_data ->> control.in_data; 
properties  
Period => 50 ms; 
end  control_speed.impl; 

8.1.6 Oversampling and Under-Sampling 

For communication between different frequency periodic threads with simultaneous dispatch, 
both delayed and immediate communications can be used to ensure a well-defined exchange.  

Consider the example of two simultaneously dispatched threads read_data and control 
shown in Figure 8-6 and Figure 8-7. In the case of a delayed connection, the value from 
read_data is available at its deadline. It is received by the two executions of control 
whose dispatch coincides with or follows that deadline (e.g., read_data may have a 
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preperiod deadline). Thus, the two executions of control occurring within an execution 
frame of read_data receive the value produced in the preceding frame of read_data. 

In contrast, consider the case of immediate connections as shown in Figure 8-7, the values 
available for two sequential executions of control are the same, the value produced within 
the 10 Hz execution frame of read_data. This result is accomplished by delaying the 
execution of the first control within the frame until the completion of read_data. 
Notice that this can only occur if both read_data and an execution of control can 
successfully complete (i.e., meet deadline) within the execution frame of control. 

read_data control

10Hz 20Hz

Timeline

read_data read_data

control control

Ti+1 (20Hz)

control

reads every value twice

control

data value from
previous (10Hz) frame

Preemption & concurrency 
are possible.

Ti (20Hz)
Tj (10Hz)

Ti+2 (20Hz)
Tj+1 (10Hz)

 
Figure 8-6:  Oversampling with Delayed Connections 

read_data control

10Hz 20Hz

Timeline

read_data read_data
control control control

reads every value twice
Immediate connection 
affects execution order.

same data value

Ti+1 (20Hz)Ti (20Hz)
Tj (10Hz)

Ti+2 (20Hz)
Tj+1 (10Hz)

 
Figure 8-7:  Oversampling with Immediate Connections 

Consider the situation where a periodic thread is sending to a simultaneously dispatched 
higher frequency thread. For a delayed connection, as shown in Figure 8-8, the data 
provided to an execution of control is the value produced by read_data that is 
available at the simultaneous dispatch of the threads. That value is produced at the most 
recent read_data deadline, which may coincide with the thread’s dispatch. In the case of 
an immediate connection as shown in Figure 8-9, the value provided to the thread 
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control is the value produced by read_data at the end of its first execution after the 
simultaneous dispatch, and the execution of control is delayed until read_data has 
completed. 

read_data control

20Hz 10Hz

Timeline

read_data

control control

read_data read_data read_data

Ti+1 (20Hz)Ti (20Hz)
Tj (10Hz)

Ti+2 (20Hz)
Tj+1 (10Hz) most recent data value 

from previous (10Hz) frame
 

Figure 8-8:  Under-Sampling with Delayed Connections  

read_data control

20Hz 10Hz

Timeline

read_data

control control

read_data read_data read_data

Ti+1 (20Hz)Ti (20Hz)
Tj (10Hz)

Ti+2 (20Hz)
Tj+1 (10Hz)  

Figure 8-9:  Under-Sampling with Immediate Connections 

8.1.7 Properties 

A variety of predeclared port properties provide details on the interface represented by 
the port, including properties relating to the 

• source text for the port  

• whether a connection is required for the port 

• port binding characteristics 

• entry points associated with event and event data ports  

For example, Source_Name is used to specify the name of the port variable in the source 
code. Required_Connection is used to indicate whether the component’s 
implementation is aware of a port’s having a connection (i.e., the connection may be 
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optional) or whether the component assumes the connection to always be in place.19 Port-
specific execution time, deadline, and source code entrypoints can be specified for each port 
to reflect that each may cause a different piece of code to be executed. Several properties 
allow the queue characteristics of event and event data ports to be specified.  

In addition, predeclared port connection properties allow the declaration of specific 
connection protocols and binding properties relating to the connection. Binding 
properties allow the declaration of actual and allowed binding as well as the 
specification of restrictions on the co-location of software elements associated with the 
connection. 

8.1.8 Port and Port Connection Constraints 

There are restrictions on the topology of port connections. An out data port can be 
connected to (i.e., send data to) data ports of multiple components—a “fan-out” of data. An 
in data port, however, is restricted to a single incoming connection. In other words, 
because it does not support queuing, an in data port cannot have a “fan-in” from 
different sources; the outputs from those sources would overwrite one another. If queuing of 
data is desired, an event data port should be used. In contrast, event ports and event 
data ports support both data fan-out and fan-in. Fan-in is supported because these ports 
support queuing. Multiple inputs at an event or event data port enable the 
specification of the sequencing of disparate events as well as the queuing of events.  

While it is permissible to omit the explicit declaration of the data type for a data or event 
data port, the explicit declaration allows checking of consistency of data type and size 
for the connections made between ports. Thus, the connection from the out data port of 
the thread read to the in data port of the thread scale in Figure 8-3 requires 
that the data type declaration for each of these ports and all of the intervening ports must be 
the same for a complete system specification. However, incomplete port specifications are 
permitted. For example, it is acceptable for one end of a connection not to have a data type 
declared while the other end does. Similarly, one end of a connection can have just a data 
component type while the other end has a data implementation with the same type. 

8.2 Port Groups 
The port group abstraction represents a collection of ports or other port groups. The 
content and structure of a port group are declared completely through a port group 
type declaration. There is no implementation declaration. Port groups are declared in the 
features section of component types and reference a port group type. They may be 
incompletely specified by not referring to a port group type or by referring to a port 
group type containing ports that themselves are not completely specified. 

                                                 
19  Source_Name and Required_Connection are in the predeclared property set 

AADL_Properties that is part of every AADL specification [SAE 06a]. 
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Port groups can be used to  

• reduce the number of connection declarations  

• simplify graphical presentations  

• allow a single reference to multiple related ports, connections, and entities in a 
specification  

• group ports with common properties (e.g., all event ports)  

• mix port types and directions 

8.2.1 Port Groups and Port Group Type Declarations 

A port group is defined in a type declaration that explicitly identifies the individual ports 
and port groups that it comprises. Example port group declarations and their declaration 
as features within a component type are shown in Table 8-4. As with other component 
type declarations, properties of the port group can be declared and a port group 
type can be extended and refined. 

The declarations in the Table 8-4 are excerpts from a complete specification and include only 
relevant declarations and portions of declarations needed to show what is required in 
specifying a specific port group. In the tables, port group type declarations are 
shown in the left column and example references to the type and supporting declarations are 
shown in the right column. 

Table 8-4: Sample Port Group with Mixed Port Types 

port group type declaration port group reference 
(with supporting declarations) 

port group roll_set 
features 
roll_data: in data port;  
roll_cmd: out data port c_form; 
engage: in event port; 
errors: port group error_set; 
end roll_set; 
 
data c_form 
end c_form; 
 
port group error_set 
features 
sensor_error: in data port;  
range_error: out event port; 
end error_set  

process control 
features 
roll_01: port group roll_set; 
end control; 
 

A port group type can be declared as the inverse of another port group type. This 
relationship is indicated by the reserved words inverse of and the name of a port 
group type. The features of the inverted port group must be in the same order as in 
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the referenced port group but with the opposite directions. A port group type that is 
named in an inverse of statement cannot itself contain an inverse of statement. 
Thus, a chaining of inverses, such as B inverse of A and C inverse of B, is not permitted. An 
example of the use of the key word inverse of is shown in Table 8-5. 

Table 8-5: A Port Group Type Declaration and its Inverse 

port group GPS_socket  
features 
 Wakeup: in event port; 
 Observation: out data port position; 
end GPS_socket; 
 
port group GPS_plug  
features 
 WakeupEvent: out event port; 
 ObservationData: in data port position; 
inverse of GPS_socket 
end GPS_plug; 

 
Figure 8-10 contains graphical icons for port groups and their connections. The graphical 
symbols of a port group represent the features declaration of the port group 
within a component type declaration. Port groups can bundle different port types and 
directions. 

Figure 8-10:  Graphical Representations of Port Groups 

8.2.2 Port Group Connections 

Connections can be made between port groups, individual ports, and the 
individual ports within a port group. Within a component, elements of a port 
group in its component type can be individually connected to ports of subcomponents. 
However, elements of a port group of a subcomponent cannot be individually connected 
to other subcomponents. In other words, grouping and pulling apart elements of a port 

Port Group
(as a feature of a thread)

Port Group Connection
(between two port groups that 
are each a feature of system)

Port Group Bundle 
(mixed directions and ports)

Port group
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group can occur when going up or down the component hierarchy, but not within the same 
level of the component hierarchy. 

Figure 8-11 shows a graphical representation of a port group identified as 
mode_control_group and its inverse, with relevant excerpts from a corresponding 
AADL specification for a simple cruise control system. The connection declaration between 
the port groups is shown in Table 8-6 that includes excerpts from an AADL specification.   

cc_process_subsystem

process_raw_data controller

port group mode_control_group_inverse
features

cc_on_in: in event port; 
cc_off_in: in event port;
brake_on_in: in event port; 

inverse of mode_control_group
end mode_control_group_inverse;

port group mode_control_group
features

cc_on_out01: out event port; 
cc_off_out01: out event port; 
brake_on_out01: out event port;

end mode_control_group;

 
Figure 8-11:  Sample Port Group Connections 

Table 8-6: Sample Port Group Connection Declarations 

process implementation process_subsystem.cc_process_subsystem 
… 
subcomponents 
process_raw_data: thread process_data.cc_process_raw_data; 
controller: thread control.cc_control; 
connections  
d_to_c: port group  process_raw_data.mc_out -> controller.mc_in; 
… 
end process_subsystem.cc_process_subsystem; 
… 
thread process_data 
features 
mc_out: port group mode_control_group; 
end process_data; 
… 
thread control 
features 
mc_in: port group mode_control_group_inverse; 
end control; 

Port groups can be effective in grouping related data and connections. For example, the 
individual outputs of multiple sensors (devices) within a sensor subsystem (grouped in a 
system) can be bundled together into a single port group. In that instance, all of the 
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sensor data is transferred through a single connection declaration from the sensor subgroup to 
a control processing system. The information provided by the ports within the port group 
is distributed through separate connections to individual control processing subsystems.  

8.2.3 Aggregate Data Ports 

Time consistency in data transmission can be achieved using an aggregate data port 
group. An aggregate data port group consists exclusively of data ports that have the 
same direction (i.e., all out data ports) with an Aggregate_Data_Port property 
value of true.20 For this specialized port group, data transmission from multiple ports is 
time coordinated—that is, if data associated with the port group is produced by a set of 
simultaneously dispatched periodic threads, the recipients of that data receive a consistent set 
of values from the most recent dispatch or a consistent set of values from the previous 
dispatch of the threads.  

8.2.4 Properties 

Predeclared port group properties can be used to establish a port group as an 
aggregate data port and define port group memory binding characteristics. Port 
group connections can have properties that reflect the properties of the ports that 
compose the port group. For example, there is a Source_Text property that 
specifies the source files associated with the port group and an 
Allowed_Memory_Binding property that specifies the set of memory components to 
which data and event data ports within the port group can be bound.  

8.3 Subcomponent Access  
Data and bus subcomponents are made accessible throughout a system through explicit 
features declarations within type declarations of components. For data components, this 
capability supports modeling of shared access to a common data area or static data. For bus 
components, this access models the connectivity of execution platform components 
through buses whose access they share.  

The access declarations are 

• provides: indicates that a component provides access to a data or bus component 
contained within it 

• requires: indicates that a component requires access to a data or bus component that 
is external to it 

 

                                                 
20  Aggregate_Data_Port is a predeclared property for every AADL specification [SAE 06a]. 
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8.3.1 Data Access Declarations 

Examples of a data subcomponent access declaration are shown in Table 8-7. There is 
an optional identifier for the declaration. 

Table 8-7: Data Access Declarations  

process control 
features 
cc_set_point_data: requires data access data_sets.set_points; 
error_log_data: provides data access logs.error_logs; 
end control; 
 
data data_sets 
end data_sets; 
 
data implementation data_sets.set_points 
end data_sets.set_points; 
 
data logs 
end logs; 
 
data implementation logs.error_logs 
end logs.error_logs; 

8.3.2 Data Access Connections 

The connections (paths) for subcomponent access are declared in connections 
declarations within component implementations. The access connection specifies the path 
from the component providing access to the component requiring access (i.e., from 
provides to requires).  

Table 8-8 presents an example of data access connections declarations. The lower 
portion of Table 8-8 is a graphical representation of these data access dependencies. The 
example shows some of the declarations for the system implementation 
basic_control.auto_cc that are relevant to the data access relationships for the 
system. The thread subcomponent cc_algorithm of the process cc_control 
requires access to the local data subcomponent comm_error_log 
(logs.error_logs). In addition, the thread subcomponent comm_errors requires 
access to the data subcomponent comm_error_log (logs.error_logs) of the 
process cc_error_monitor. This connection is a remote connection across address 
spaces, where the process cc_control provides access to its data subcomponent.  

Notice the concurrent access to the data subcomponent comm_error_log 
(logs.error_logs) in the example. The predeclared property 
Concurrency_Control_Protocol can be used to coordinate this access (e.g., to 
ensure mutually exclusive access). Other predeclared properties for data subcomponent 
access identify whether the required or provided access is read_only, write_only, or 
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read_write. A Required_Access property association must be the same as the 
Provided_Access property of the component that is accessed.21 

Table 8-8: Shared Access across a System Hierarchy 
system implementation basic_control.auto_cc 
subcomponents 
cc_control: process control.cc_control; 
cc_error_monitor: process monitor.error_monitor; 
connections 
a_01: data access cc_control.error_log_data -> 
cc_error_monitor.error_data_in; 
end basic_control.auto_cc; 
-- 
process control 
features 
error_log_data: provides data access logs.error_logs  
                    {Provided_Access => access read_only;}; 
end control; 
 
process implementation control.cc_control 
subcomponents 
comm_error_log: data logs.error_logs {Provided_Access =>  
                                                       read_write;}; 
cc_algorithm: thread algorithm.cc; 
connections 
data access comm_error_log -> error_log_data; 
data access comm_error_log -> cc_algorithm.error_log_data; 
end control.cc_control; 
 
thread algorithm 
features 
error_log_data: requires data access logs.error_logs  
                         {Required_Access => access read_write;}; 
end algorithm; 
 
thread implementation algorithm.cc 
end algorithm.cc; 
 
data logs 
end logs; 
 
data implementation logs.error_logs 
end logs.error_logs; 
 
process monitor 
features 
error_data_in: requires data access logs.error_logs  
                         {Required_Access => access read_only;}; 
end monitor; 

                                                 
21  The predeclared properties Concurrency_Control_Protocol, Required_Access, and 

Provided_Access are included in the property set AADL_Properties. This property set 
declaration is part of every AADL specification [SAE 06a]. 
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Table 8-8: Shared Access across a System Hierarchy (cont.) 

process implementation monitor.error_monitor 
subcomponents 
comm_errors: thread m_algorithm.errors; 
end monitor.error_monitor; 
 

 

thread m_algorithm 
features 
c_error_data: requires data access logs.error_logs  
                             {Required_Access => access read_only;}; 
end m_algorithm; 
 

thread implementation m_algorithm.errors 
end m_algorithm.errors; 

cc_error_monitor

cc_control

comm_error_log

cc_algorithm

comm_errors

basic_control.auto_cc

requires data access to 
comm_error_log

(logs.error_logs – read_write)

requires data access to 
comm_error_log

(logs.error_logs – read_only)

provides data access to 
comm_error_log
(logs.error_logs) 

 
 

8.3.3 Bus Access and Bus Access Connections 

In addition to access to data, access to buses is declared explicitly in AADL. Table 8-9 shows 
an example of bus access for a simplified cruise control system that consists of a cruise 
control unit (system component) and driver input, speed sensor, and throttle devices. 
The additional execution hardware for the system consists of a processor that executes 
the cruise control system application software and a bus connecting the hardware 
components. The figure in the lower portion of Table 8-9 is a graphical representation for 
required access features and connections to the bus declared in the text. It also 
shows the data connections for the system. Some of the details of the subcomponent 
declarations are not complete in the sample specifications. 
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Table 8-9: Basic Bus Access and Access Connection Declarations 

system implementation cruise_control_system.impl 
subcomponents 
driver_input_unit: device driver_input_unit; 
speed_sensor: device speed_sensor; 
CCU: system CCU_system; 
throttle_actuator: device  throttle_actuator; 
M555: processor M555;  
CANBus: bus CANBus.impl; 
connections 
-- data port connections not included 
-- bus access connections 
bus_access_01: bus access  CANBus ->  driver_input_unit.bus_access; 
bus_access_02: bus access  CANBus ->  speed_sensor.bus_access; 
bus_access_03: bus access  CANBus ->  throttle_actuator.bus_access; 
bus_access_04: bus access  CANBus -> M555.bus_access; 
end cruise_control_system.impl; 
-- 

device driver_input_unit 
features 
set_speed: out data port; 

bus_access: requires bus access CANBus.impl; 
end driver_input_unit; 
-- 
system cruise_control_system 
end cruise_control_system; 
-- 
bus CANBus 
end CANBus; 
-- 
bus implementation CANBus.impl 
end CANBus.impl; 
-- 
system CCU_system 
end CCU_system; 
-- 
device speed_sensor 
features 
bus_access: requires bus access CANBus.impl; 
end speed_sensor; 
-- 
device throttle_actuator 
features 
bus_access: requires bus access CANBus.impl; 
end throttle_actuator; 
-- 
processor M555 
features 
bus_access: requires bus access CANBus.impl; 
end M555; 
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Table 8-9: Basic Bus Access and Access Connection Declarations (cont.) 

throttle_
actuator

driver_input
_unit

CANBus

cruise_control_system.impl

M555
speed_
sensor

CCU

 
 
Table 8-10 illustrates how to model two subsystems with hardware components and bus 
connections. Some of the specifications are not complete (e.g., type rather than 
implementation classifiers are used in defining some of the components and 
subcomponents). In the illustration, one subsystem is connected to the other by a bus 
provided by the second subsystem. Specifically, the application system requires bus 
access to the network system’s 1553 bus. The bus access, requires, provides, 
and connections are shown both graphically (lower portion of Table 8-10) and as AADL 
text declarations.  

Table 8-10: Example Bus Access Connection Declarations 

system containing_system 
end containing_system; 
-- 
system implementation containing_system.impl 
subcomponents 
network: system network; 
application: system application; 
connections 
bus access network.network_bus -> application.network_bus; 
end containing_system.impl; 
-- 
system network 
features 
network_bus: provides bus access B_1553; 
end network; 
-- 
system implementation network.impl 
subcomponents 
B_1553: bus B_1553; 
connections 
C01: bus access B_1553 -> network_bus; 
end  network.impl; 
-- 
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Table 8-10:  Example Bus Access Connection Declarations (cont.) 

system application 
features 
network_bus: requires bus access B_1553; 
end application; 
-- 
system implementation application.impl 
subcomponents 
PC_processor: processor PC; 
connections 
bus access  network_bus -> PC_processor.network_bus; 
end application.impl; 
-- 
processor PC 
features 
network_bus: requires bus access B_1553; 
end PC; 
-- 
bus B_1553  
end b_1553; 

B_1553

PC_processor

application

network

containing_system.impl

 

8.4 Subprogram Calls 
Subprogram calls are declared through calls declarations within a thread or 
subprogram implementation. The subprogram that is called must be declared 
through a subprogram type declaration and possibly a subprogram 
implementation declaration, as discussed in the Section 5.5.1 (Subprogram 
Declarations).  

In the current version of the AADL standard, subprograms are not declared as instances 
through a subprogram subcomponent declaration. The need for such instances is inferred 
from the calls and can take into account sharing of subprogram libraries across 
processes. The specific subprogram called is declared through a property association of 
the predeclared property Actual_Subprogram_Call. The example in Table 8-12 
illustrates this principle. 
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8.4.1 Call Sequences 

There may be a sequence of calls declared within a component implementation. An 
example is shown in the partial specification of Table 8-11 where the calls sequence 
two_calls involves a call to the subprogram  implementations acquire.temp and 
then adjust.level. The associated subprogram declarations are also shown. The 
calls sequence is determined by the subprogram  calls declaration order. In other 
words, the calls order is linear. If more complex call orderings are desired, an annex 
notation could provide specification of other orderings, such as a “branch” or “iteration.” 
Alternatively, one can specify different calls sequences that are active under different 
modes. For more details on the use of modes, see Section 9 (Modes).  

Notice that subprograms may call other subprograms. This circumstance is shown in 
Table 8-11 where the subprogram implementation adjust.level calls the 
subprogram find.temp_values.  

Graphically, subprogram calls are represented by subprogram symbols, arranged left 
to right within a thread implementation or subprogram symbol. A call sequence 
arrow may be included as shown in the figure in the lower potion of Table 8-11.  

Table 8-11: Example Subprogram Calls 

thread implementation control.thermal_control 
-- 
calls  
two_calls:{ 
                   get_temp: subprogram acquire.temp; 
                   adjust_level: subprogram adjust.level; 
     }; 
-- 
end control.thermal_control; 

subprogram acquire 
end acquire; 

subprogram implementation acquire.temp 
end acquire.temp;  

subprogram adjust 
end adjust; 

subprogram implementation adjust.level 
calls 
 { 
 find_scale_values: subprogram find.temp_values; 
 }; 
end adjust.level; 

subprogram find 
end find; 

subprogram implementation find.temp_values 
end find.temp_values; 
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Table 8-11: Example Subprogram Calls (cont.) 

adjust_level

call sequence arrow 
(optional)

control.thermal_control

get_temp

 

8.4.2 Remote Calls 

Remote client-server interactions can be modeled using server subprogram calls as 
shown in the partial specification in Table 8-12. The property association 
Actual_Subprogram_Call declares that the subprogram call call_server 
within the thread calling_thread, which is a subcomponent of the process 
client_process, is being made to the subprogram contained within the server 
process (server_process). This is an example of a contained property association 
that is discussed in more detail in Section 11.2.2 (Contained Property Associations). 

Table 8-12: Client-Server Subprogram Example  

system implementation client_server_sys.impl 
subcomponents 
client_process: process client_process.impl; 
server_process: process server_process.impl; 
properties 
Actual_Subprogram_Call => reference server_process. 
                                    server_thread.service  
                             applies to  client_process.  
                                         calling_thread.call_server; 
end client_server_sys.impl; 
-- 
process client_process 
end client_process; 
-- 
process implementation client_process.impl 
subcomponents 
calling_thread: thread calling.impl; 
end client_process.impl; 
-- 
thread calling 
end calling; 
-- 
thread implementation calling.impl  
calls { 
              call_server: subprogram service_it ; 
 }; 
end calling.impl; 
---- 
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Table 8-12:  Client-Server Subprogram Example (cont.) 

process server_process 
features 
service: server subprogram service_it; 
end server_process; 
-- 
process implementation server_process.impl 
subcomponents 
server_thread: thread server_thread.impl; 
end server_process.impl; 
-- 
thread server_thread 
features 
service: server subprogram service_it; 
end server_thread; 
-- 
thread implementation server_thread.impl 
end server_thread.impl; 
-- 
subprogram service_it 
end service_it;  

calling_thread

client_process

server_thread

server_process

service

call_server

client_server_system.impl

server subprogram call binding:
Actual_Subprogram_Call => 

reference server_process.server_thread.service
applies to client_process.calling_thread.call_server;

 
 

8.4.3 Properties 

Subprogram calls properties identify the allowed and actual server subprograms 
involved in a remote server subprogram call. In addition, these properties can be 
used to specify the allowed and actual binding of the calls to physical elements that support a 
remote server subprogram call. If no values are assigned to these properties, the 
subprogram call is a local call to a server subprogram.22  

                                                 
22  In the AADL standard, the subprogram calls of all threads must either be local calls or 

be bound to a server subprogram whose thread is part of the same mode, in a completely 
instantiable system [SAE 06a].  
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8.5 Data Exchange and Sharing in Subprograms 
A subprogram can receive and provide data through a variety of mechanisms including 

• parameter (passing by value) 

• access (passing by reference) 

• global/static (shared) data  

These diverse and often implicit aspects of data that are followed in programming languages 
can be modeled and explicitly documented in an AADL representation through parameters, 
access features, and their associated connections. 

8.5.1 Data Exchange by Value: Parameters and Connections 

A parameter represents call and return data values passed into and out of a 
subprogram. These exchanges by value are declared as typed data features in the 
type declaration of a subprogram, similar to data port declarations. Parameter 
connections are used to describe the flow of data into and out of a subprograms and 
the data flow through a sequence of subprogram calls within a thread. These 
connections can be useful in a comprehensive flow analysis when used in conjunction 
with flows declarations. For more detail on the use of parameters in flow analysis, see 
Section 10 (Flows). 

Table 8-13 presents textual and graphical representations of the parameters and the 
parameter connections associated with a calls sequence within a thread. In a 
graphical representation  

• parameters are represented as solid arrows ( ), like data ports  

• parameter connections are shown as solid lines (▬) between parameters or 
between a parameter and a port (on a containing thread of the subprogram 
call)  

• subprogram calls are represented by ovals (       ) labeled with the call (e.g., 
scale) and called subprogram type 

• calls sequence is indicated by an arrow with an open arrow head (→) (Alternatively, a 
calls sequence can be specified by the ordering of the calls from the left to the 
right.)  

Notice that the in event data port in_data of the thread scale_data is 
connected to the parameter in_parameter of the subprogram scale. Parameters 
can be connected to in data port, out data port, and event data port.  
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Table 8-13:  Example Parameter Connections 

thread scale_data 
features 
in_data: in event data port; 
out_data: out data port; 
end scale_data; 
-- 
thread implementation scale_data.impl 
calls  { 
scale: subprogram scale; 
edit: subprogram edit_range; 
update: subprogram update_set; 
 }; 
connections 
parameter in_data -> scale.in_parameter; 
parameter scale.interim_value -> edit.interim_value; 
parameter edit.out_parameter -> update.io_parameter; 
parameter update.io_parameter -> out_data; 
end scale_data.impl; 
-- 
subprogram scale 
features 
in_parameter: in parameter; 
interim_value: out parameter; 
end scale; 
-- 
subprogram edit_range 
features 
interim_value: in parameter; 
out_parameter: out parameter; 
end edit_range; 
-- 
subprogram update_set 
features 
io_parameter: in out parameter; 
end update_set 

scale edit update

call sequences

parameter connections

scale_data

 

8.5.2 Data Passing by Reference and Global Data 

The flow of data into and out of a subprogram can involve references to data (e.g., 
pointer values) or access to common data values (i.e., global or static data), rather than 
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explicit data passing. These data reference mechanisms are described through data 
requires/provides data access declarations in an AADL model.  

For example, consider the annotated pseudocode and corresponding AADL textual 
representation in Table 8-14. In the pseudocode, examples of subprogram calls with 
data reference and the use of global data are shown. In the Passing by reference 
section of pseudocode, the function scale modifies data (referenced with the pointer p1) 
using the scale factor v1. In the second implementation of scale (the Global variable 
section of Table 8-14), a parameter data value (the scale factor) is passed and a common 
data element raw_data is scaled.  

Within AADL, both of these options are represented with v1 as a parameter, whereas the 
pointer p1 and the common data raw_data are represented as a data access feature of 
the subprogram scale. The thread processing has a call to the subprogram 
scale. A corresponding AADL representation for the Global variable pseudocode explicitly 
shows the thread receiving the data value for v1 through the in data port scalar 
and using that value in the subprogram call, as indicated by the parameter connection 
VC1 in the thread. In contrast, the pointer reference to the data to be scaled is represented 
as a data access in the subprogram type declaration for scale. The explicit 
reference to raw_data in the subprogram scale is the requires statement in the 
thread type declaration. The AADL specification allows an implementation using 
either option shown in pseudocode.  

Table 8-14: Examples of Passing by Reference and Global Data 

Pseudocode AADL Representation 

Passing by reference: 
…… 
scale (v1, p1) 
v1 is a real that is 
the scale factor. 
p1 is a pointer to a 
data set ‘raw_data’ 
that is to be scaled. 
… 
processing that calls 
the subprogram: 
… 
call scale (v1, p1); 
…. 

subprogram scale 
features 
v1: in parameter real; 
p1: requires data access raw_data; 
end scale; 
-- 
data raw_data 
end raw_data; 
-- 
data real 
end real; 
-- 
thread processing 
features 
scalar: in data port real; 
p1: requires data access raw_data; 
end processing; 
-- 
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Table 8-14: Examples of Passing by Reference and Global Data (cont.) 

Global variable: 
…  
variable and 
processing 
definitions: 
…. 
real: raw_data; 
… 
scale(v1)  
   {  
      x := 
raw_data; 
    } 
… 
processing that 
calls the 
subprogram: 
… 
call scale(v1); 
…. 
 

thread implementation processing.impl 
calls { 
 scale_it: subprogram scale; 
       }; 
connections 
VC1: parameter scalar -> scale_it.v1; 
PC1: data access p1 -> scale_it.p1; 
end processing.impl; 
-- 
process data_management 
features 
scalar: in data port real; 
end data_management; 
-- 
process implementation data_management.impl 
subcomponents 
r_data: data raw_data; 
data_processing: thread processing.impl; 
connections 
C1: data port scalar -> data_processing.scalar; 
C2: data access r_data -> data_processing.p1; 
end data_management.impl; 

8.5.3 Method Calls in AADL 

Calls to object methods can be represented in AADL as calls to subprogram 
features of a data component. Consider the pseudocode in Table 8-15 where the method 
errorTotal of the class ErrorLog returns an integer value that is the total number of 
errors currently in the log. The corresponding AADL representation involves the declaration 
of an enclosing process implementation that establishes instances of the thread 
monitor and the data component ErrorData, as well as the required data access 
of the thread monitor to ErrorData. The implementation of the thread 
monitor involves the call sequence to subprograms errorTotal and reset. The 
integer type return value for errorTotal is represented as the out parameter total. 
The data access connections are shown graphically in the figure of Table 8-15 and 
indicate the subprogram and thread access to ErrorData.  

Table 8-15: Methods Calls on an Object 

Object-Oriented Pseudocode AADL Representation 

class ErrorLog { 
       int errorTotal () { 
… 
  } 
      void reset() { 
…. 
  } 
….. 
 

process implementation 
maintenance.control 
subcomponents 
monitor: thread monitor.errors; 
ErrorData: data ErrorLog; 
connections 
C1: data access ErrorData ->  
monitor.log_access; 
end  maintenance.control; 
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Table 8-15: Methods Calls on an Object (cont.) 

 

public static void main() 
{ 
… 
ErrorLog stabilizer = new 
ErrorLog(); 
int errors;  
errors = 
stabilizer.errorTotal(); 
stabilizer.reset();  
... 
  } 
 

-- 
thread monitor 
features  
log_access: requires data access 
ErrorLog; 
end monitor; 
-- 
thread implementation monitor.errors 
calls { 
errors: subprogram ErrorLog.errorTotal; 
reset_it: subprogram ErrorLog.reset; 
      }; 
Connections 
  Data access log_access  -> 
reset_it.this; 
  Data access log_access -> errors.this; 
end monitor.errors; 
--  
data ErrorLog 
features 
errorTotal: subprogram errorTotal; 
reset: subprogram reset; 
end ErrorLog; 
-- 
subprogram errorTotal 
features 
  this: requires data access ErrorLog; 
  total: out parameter  
                BaseTypes::integer; 
end errorTotal; 
-- 
subprogram reset 
features 
  this: requires data access ErrorLog; 
end reset; 

errors reset_it

monitor

errorTotal

reset

ErrorData

maintenance.control

this:

log_access: 

this:
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9 Modes 

A modes abstraction is an explicitly defined configuration of contained components, 
connections, and property value associations. Modes represent alternative 
operational states of a system or component. For example, modes for a cruise control system 
may be {initialize, disengaged, engaged}, where each of these modes may 
involve different sets of processes, executing threads, or active connections (e.g., in the 
initialization mode there are no connections to sensors).  

Modes may specify different calls sequences to be used in a thread or subprogram. 
Modes also may represent different logical states of any component, such as a thread or 
subprogram, for which different property values apply. For example, under different 
modes a thread may have different execution times to represent an algorithm that can 
execute with different levels of precision. Modes may also represent different hardware 
configurations such as processors that are active at any one time.  

9.1 Modal Specifications 
Modes are represented as states within a state machine abstraction. Each distinct 
configuration of a component is identified as one mode (state) within the modal state 
machine abstraction for the component. The configuration that defines each mode and the 
events that cause the transitions in the behavior of the component must be specified. Each 
modal state machine must have at least two modes, one of which must be declared as the 
initial mode for the component. 

Modes can be used to represent alternative system configurations in a variety of ways. They 
can establish  

• alternative configurations of active components and connections and the transitions 
among these configurations  

• variable call sequences within a thread 

• mode-specific properties for software or hardware components 

9.1.1 Modal Configurations of Subcomponents and Connections 

Table 9-1 presents both textual and graphical representations of modes transition 
specifications for a simplified controller thread within a cruise control system. In this 
example, mode transitions are triggered by external events. Only the relevant ports are shown 
in the type declaration for the thread control. Neither type nor implementation 
declarations are complete. The graphic shows the mode transition view for the thread. 
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There are two modes, idle and controlling, and three event ports in this example. 
The idle mode is the initial mode. The event brought into the thread by event 
port cc_engage results in a mode transition to the controlling mode (the thread 
configuration that provides the functionality to maintain a set speed). The event carried 
through the event port cc_resume_e1 also results in a switch to the controlling 
mode using the previous value of the speed setting. Event port cc_brake results in an 
exiting of the controlling mode to the idle mode. 

Table 9-1: Sample Graphical and Textual Specifications for Modes 

thread control 
features 
cc_engage : in event port; 
cc_resume_e1 : in event port; 
cc_brake: in event port; 
end control; 
 
thread implementation control.cc_control 
modes 
idle : initial mode; 
controlling : mode; 
idle -[ cc_engage, cc_resume_e1 ]-> controlling; 
controlling -[ cc_brake]-> idle; 
end control.cc_control; 

cc_resume_e1
cc_brake

cc_engage

control.cc_control

idle

controlling

 

 

The example in Table 9-2 shows a multimode process where internal events result in mode 
changes of a process. In the textual specification for the process 
control_algorithms.impl, the modes section defines the two operational modes of 
ground and flight and the transitions between them. The transitions are triggered by 
out event ports from the thread controller that is a subcomponent of the 
process implemenation control_algorithms.impl. The specification for the 
process implementation includes in modes clauses that define the subcomponents 
and connections active in each mode. 
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In the upper right portion of the figure in Table 9-2, a graphic shows the modes and their 
transitions that are triggered by the events from the controller thread. In that figure, 
the flight mode configuration is shown in black and the ground mode is shown in gray. 
This distinction illustrates that the ground_algorithms thread and its 
connections are not part of the flight mode. 

Table 9-2: Modes Example 

process control_algorithms 
features  
status_data: in data port; 
aircraft_data: in data port; 
command: out data port; 
end  control_algorithms; 
-- 
process implementation control_algorithms.impl 
subcomponents 
controller: thread controller; 
ground_algorithms: thread ground_algorithms in modes (ground); 
flight_algorithms: thread flight_algorithms in modes (flight); 
connections 
C1: data port aircraft_data -> ground_algorithms.aircraft_data in 
modes (ground); 
C2: data port aircraft_data -> flight_algorithms.aircraft_data in 
modes (flight); 
C3: data port ground_algorithms.command_data -> command in modes 
(ground); 
C4: data port flight_algorithms.command_data -> command in modes 
(flight); 
modes 
ground: initial mode; 
flight: mode; 
ground -[controller.switch_to_flight]-> flight; 
flight -[controller.switch_to_ground]-> ground; 
end control_algorithms.impl; 
-- 
thread controller 
features 
status_data: in data port; 
switch_to_ground: out event port; 
switch_to_flight: out event port; 
end controller; 
-- 
thread ground_algorithms 
features 
aircraft_data: in data port; 
command_data: out data port; 
end ground_algorithms; 
-- 
thread flight_algorithms 
features 
aircraft_data: in data port; 
command_data: out data port; 
end flight_algorithms; 
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Table 9-2: Modes Example (cont.) 

controller

flight_
algorithms

ground_
algorithms

flight

ground

control_algorithms

 

9.1.2 Modal Configurations of Call Sequences 

Alternative calls sequences can be specified using modes. The example in Table 9-3 
shows a monitor thread that checks software and hardware and reports anomalies. The 
thread employs a sequence of calls to subprograms when the thread is in the 
nominal mode. When an error is detected, an error_condition is signaled through 
the event port error_event. This signal results in a mode switch and changes the 
subprogram calls sequence of the thread.  

Table 9-3: Mode-Dependent Call Sequences 

thread monitor 
features 
error_event: in event port; 
repaired: in event port; 
end monitor; 
-- 
thread implementation monitor.impl 
calls  
 nominal_sequence: { 
  call_cksw: subprogram check_sw; 
  call_ckhw: subprogram check_hw; 
  call_report: subprogram report; 
  } in modes (nominal); 
        error_sequence: { 
  call_alarm: subprogram alarm; 
  call_diag: subprogram diagnose; 
  callreport: subprogram report; 
  } in modes (error_condition); 
modes 
nominal: initial mode; 
error_condition: mode; 
nominal -[error_event]-> error_condition; 
error_condition -[repaired]-> nominal; 
end monitor.impl; 
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9.1.3 Mode-Specific Properties 

Property values assignments can be mode-dependent. These mode-specific property 
associations can be used to define alternative characteristics and behavior for components. 
For example, consider the partial specification in Table 9-4 that has a modified version of the 
process implementation for control_algorithms.impl shown in Table 9-2. 
In this example, the controller thread has a different execution time for the ground 
mode than for the flight mode. 

Table 9-4: Mode-Specific Component Property Associations 
 
process implementation control_algorithms.impl 
subcomponents 
controller: thread controller {Compute_Execution_Time => 2 ms..5ms    
in modes (ground);  
Compute_Execution_Time => 3 ms..7ms in modes (flight);}; 
ground_algorithms: thread ground_algorithms in modes (ground); 
flight_algorithms: thread flight_algorithms in modes (flight); 
-- 
end control_algorithms.impl; 
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10 Flows  

AADL flows specification capabilities enable the detailed description and analysis of an 
abstract information path through a system. A complete path for an abstract information 
flow—an end-to-end flow implementation—begins at a source component and terminates 
at a sink component. The specification of an end-to-end flow involves the declaration of the 
elements of the flow (sources, sinks, and paths) and explicit implementation 
declarations that describe the details of a complete path through the system. 

A source component of a flow is characterized by the feature (e.g., port, port group, or 
parameter) through which the flow emerges from the component. Similarly, a sink 
component of a flow is characterized by the feature through which the flow enters the 
component and terminates. Details of a flow path are described by identifying the entry 
and exit features of each intermediary component and subcomponent involved in the flow.  

10.1 Flow Declarations  
Flows are directional. To specify a complete flow, declarations in component types and 
implementations are required. For a component type, flows declarations designate a  

• source: a feature of a component 

• sink: a feature of a component 

• flow path: a flow through a component from one feature to another 

Table 10-1 shows a partial specification for a simplified cruise control system with flow 
source, flow sink, and flow path declarations within component type declarations.  
Notice that the flow path brake_flow through the system component 
cruise_control has an in event data port as its origin and an out data 
port as its termination feature. The lower portion of the table includes a graphical 
representation of the declarations. 

Table 10-1: Flow Declarations within a Component Type Declaration  

device brake_pedal 
features  
 brake_event: out event data port float_type; 
flows 
 Flow1: flow source brake_event;      
end brake_pedal; 
-- 
system cruise_control 
features 
 brake_event: in event data port; 
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Table 10-1: Flow Declarations within a Component Type Declaration (cont.) 
       throttle_setting: out data port float_type; 
flows 
 brake_flow: flow path brake_event -> throttle_setting ;  
end cruise_control;  
-- 

device throttle_actuator  
features 
  throttle_setting: in data port float_type; 
flows 
    Flow1: flow sink throttle_setting;   
end throttle_actuator; 

cruise_control throttle_
actuator

brake_
pedal

flow source

flow path

flow sink

 

10.2 Flow Paths 
Within a component implementation, flow declarations define the details of  

• flow paths through a component 

• end-to-end flows within the component 

10.2.1 Flow Path through a Component 

A flow path through a component consists of alternating sequences of paths through and 
connections among subcomponents within the component. This path begins and ends at 
features of the component type and is a realization of the corresponding flow path 
declared in the component’s type declaration. Table 10-2 shows the flows 
implementation declarations through the component cruise_control.impl for the 
flow path brake_flow declared in the type declaration cruise_control of Table 
10-1. It also shows a graphical representation of the flow path. 

The flows implementation originates at the brake_event event data port 
and proceeds through to the data port throttle_setting. The flow involves the 
connections C1, C3, and C5 within the component implementation 
cruise_control.impl, as well as the paths through the subcomponents of that 
implementation. Notice that the nature of the data within the flow changes and 
involves event data ports as well as data ports.  
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Table 10-2: Flow Implementation Declarations through a Component 

system implementation cruise_control.impl 
subcomponents 
data_in: process interface; 
control_laws: process control; 
connections 
C1: event data port brake_event -> data_in.brake_event; 
C3: data port data_in.out_port -> control_laws.in_port; 
C5: data port control_laws.out_port -> throttle_setting; 
flows 
brake_flow: flow path brake_event -> C1 -> data_in.interface_flow1 -> 
                            C3 -> control_laws.control_flow1 -> C5 -> 
throttle_setting; 
end cruise_control.impl; 
-- 
process interface 
features 
brake_event: in event data port ; 
out_port: out data port float_type; 
flows 
interface_flow1: flow path brake_event -> out_port; 
end interface; 
-- 
process control 
features  
in_port: in data port float_type; 
out_port: out data port float_type; 
flows 
control_flow1: flow path in_port -> out_port; 
end control; 

control_laws

cruise_control

data_inC1 C5C3brake_event throttle_setting

connections

flow path
interface_flow1 flow path

control_flow1

 

10.2.2 End-to-End Flow within a Component 

An end-to-end flow within a component involves the declaration of a path from a flow 
source to a flow sink within the component. The partial specification in Table 10-3 
illustrates this type of declaration: an end-to-end flow is defined between the source 
Flow1 in the device component brake_pedal and the sink Flow1 in the device 
component throttle_actuator.  
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Table 10-3: An End-to-End Flow 

system implementation complete.impl 
subcomponents 
brake_pedal: device brake_pedal; 
cruise_control: system cruise_control; 
throttle_actuator: device throttle_actuator; 
connections 
C1: event data port brake_pedal.brake_event -> 
cruise_control.brake_event; 
C2: data port cruise_control.throttle_setting -> 
throttle_actuator.throttle_setting; 
flows 
brake_flow: end to end flow brake_pedal.Flow1 -> C1 -> 
cruise_control.brake_flow -> C2 -> throttle_actuator.Flow1; 
end complete.impl; 
-- 

device brake_pedal 
features  
brake_event: out event data port; 
flows 
Flow1: flow source brake_event;  
end brake_pedal; 
-- 
system cruise_control 
features 
brake_event: in event data port; 
throttle_setting: out data port float_type; 
flows 
brake_flow: flow path brake_event -> throttle_setting; 
end cruise_control;  
-- 
device throttle_actuator  
features 
throttle_setting: in data port float_type; 
flows 
Flow1: flow sink throttle_setting;  
end throttle_actuator; 
-- 
data float_type 
end float_type; 

C2C1
brake_
pedal

cruise_control throttle_
actuator

flow sink Flow1flow source Flow1

flow path brake_flow
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11 Properties 

Properties provide descriptive information about  

• components 

• subcomponents 

• features 

• connections 

• flows 

• modes 

• subprogram calls  

A property has a name, type, and an associated value. Properties can be assigned 
values through property association declarations. 

There are built-in property types and predeclared properties in the AADL standard. 
Collectively, these properties and property types encompass common attributes for 
the elements of the language. For example, a predeclared property of a port is 
Required_Connection, which is of type aadlboolean and has a value of true or 
false.23 Its predeclared (default) value is true. However, a property association can assign 
the value false, allowing the port to be unconnected. A summary of AADL built-in 
property types is included on page 122 in the Appendix. 

In addition to providing predeclared properties and built-in property types, AADL 
also permits the defining of new properties and property types. For example, to 
define a new property (e.g., Priority) for a thread, a user would declare a 
property name, type, and association of the new property. The property type declared 
for a new property may be a built-in type (e.g., aadlinteger), or a new type can be 
declared using a property type declaration.  

11.1 Property Declarations 
The declarations relating to properties are listed below.  

• property association (Section 11.2): assigns a value or list of values to a named 
property  

                                                 
23 Required_Connection is included in the predeclared property set named 

AADL_Properties that is part of every AADL specification [SAE 06a]. 
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• property set (Section 11.3): defines a named collection of property types, names, and 
constants  

• Property type (Section 11.4) defines a property type and specifies the set of 
acceptable values for properties of that type. 

• Property name (Section11.5) defines a property by declaring a name, identifying a 
type for the property, and applying it to a category of element within the specification 
(i.e., mode, port group, flow, port, server subprogram, or connection). 

• Property constant (Section 11.6) defines a name for a property value that can be 
referenced in property expressions wherever the value itself is permissible. 

Property name, property type, and property constant declarations must be contained within a 
property set declaration.  

11.2 Assigning Property Values 
A property can be assigned a value or a list of values through a property association 
declaration. Property values can be associated with properties directly within individual 
component declarations, through an inherited value or an explicit contained property 
association referencing elements within a hierarchal component. In addition, property 
associations can be declared as being mode- or platform-binding specific.  

11.2.1 Basic Property Associations 

Property associations can be included within the properties section of component 
type or implementation declarations or within declarations for subcomponents, 
features, connections, flows, modes, and subprogram calls and their 
refinements. 

Sample component property association declarations are shown in Table 11-1 where an 
implementation speed_data of the thread type data_processing is declared 
with associations for two standard properties. The Period property is assigned a 
single value of 100 ms. The Compute_Execution_Time assigned value is a range. In 
addition, the in data port declaration sensor_data includes a property association 
that declares the port need not be connected, and the thread subcomponent declaration 
for data_processing includes a property association declaring the initialization 
execution time range for the thread (1 ms .. 2 ms). 

Table 11-1: Basic Property Association Declarations 

thread data_processing 
features 
sensor_data: in data port {Required_Connection => false;};  
end data_processing; 
-- 
thread implementation data_processing.speed_data   
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Table 11–1: Basic Property Association Declarations (cont.) 

properties 
    Period => 100 ms; 
    Compute_Execution_Time  => 5 ms .. 10 ms; 
end data_processing.speed_data; 
--  
process implementation control.impl 
subcomponents  
data_processing: thread data_processing.speed_data 
{Initialize_Execution_Time => 1 ms .. 2 ms;}; 
end control.impl; 

Access property associations are used to detail the character of subcomponent access, 
both requires and provides. Table 11-2 shows two access property associations, 
where the process control requires read_only access to set point data 
data_sets.set_points and provides read_write access to its internal error 
logs. This is a modification of an example from Table 8-7. 

Table 11-2: Sample Access Property Associations 

process control 
features 
cc_set_point_data: requires data access data_sets.set_points  
                            {Required_Access => access read_only;}; 
error_log_data: provides data access logs.error_logs  
                            {Provided_Access => access 
read_write;}; 
end control; 

11.2.2 Contained Property Associations 

Property associations for individual components have been shown in earlier examples 
(e.g., Table 11-1). These declarations assign values for instances of the component. However, 
explicit property associations may be omitted for a number of the elements of an 
individual component. In these cases, values can be assigned through contained property 
association declarations or inherited from declarations higher in the component containment 
hierarchy.  

A contained property association can be used to assign a property value to 
subcomponents, features, flows, connections, or modes defined within a 
component. A value can be assigned to an element that is deeply nested within the 
component. In addition, with contained property associations, configuration parameters 
for a system can be defined at a single point (e.g., at the highest point possible in the 
component hierarchy). In that way, the parameters provide a centralized set of properties 
and values for elements of a model that can readily be identified, adjusted, and reviewed.  

An explicit contained property association is declared using an applies to clause that 
specifically identifies an element within the component. The identification path to the 
element consists of a dot-separated sequence of zero or more subcomponent identifiers 
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followed by the identifier of the subcomponents, features, flows, connections, 
or modes identifier to which the property association applies. Consider the partial 
specification in Table 11-3 that shows the relevant type and implementation declarations 
for a simplified cruise control system. The property associations within the system 
implementation declaration for cc_complete.impl are property associations for 
the execution time for the compute entry point of a contained thread 
control_algorithm and the required connection value for a data port of the 
contained thread adjust.  

Table 11-3 shows two contained property associations within the system 
implementation cruise_control.impl. In the first association, the computation 
time for the compute entry point of the subcomponent thread control_algorithm is 
assigned the range of 2 ms.. 5 ms. The thread control_algorithm is contained 
within the process control_laws that is a subcomponent of the system 
cruise_control. In the second association, the Required_Connection property 
is assigned the value false for the out data port of the contained thread adjust. 

Table 11-3:  Contained Property Associations 

system cc_complete 
properties 
Period => 20ms; 
end cc_complete; 
-- 
system implementation cc_complete.impl 
subcomponents 
brake_pedal: device brake_pedal; 
cruise_control: system cruise_control.impl; 
throttle_actuator: device throttle_actuator; 
connections 
C1: event data port brake_pedal.brake_event -> 
cruise_control.brake_event; 
C2: data port cruise_control.throttle_setting -> 
throttle_actuator.throttle_setting; 
properties 
Compute_Execution_Time => 2 ms.. 5 ms applies to                      
    cruise_control.control_laws.control_algorithm; 
 
Required_Connection => false applies to                               
    cruise_control.control_laws.adjust.out_port; 
end cc_complete.impl; 
-- 
system implementation cruise_control.impl 
subcomponents 
data_in: process interface; 
control_laws: process control.impl; 
connections 
C1: event data port brake_event -> data_in.brake_event; 
C3: data port data_in.out_port -> control_laws.in_port; 
C5: data port control_laws.out_port -> throttle_setting; 
end cruise_control.impl; 
-- 
process control 



Section 11: Properties 

CMU/SEI-2006-TN-011 99 

Table 11–3:  Contained Property Associations (cont.) 

features 
in_port: in data port ; 
out_port: out data port ; 
end control; 
-- 
process implementation control.impl 
subcomponents 
adjust: thread adjust_sensor_value.impl; 
control_algorithm: thread algorithm.impl; 
end control.impl; 
-- 
thread adjust_sensor_value 
features 
in_port: in data port; 
out_port: out data port; 
end adjust_sensor_value; 
-- 
thread implementation adjust_sensor_value.impl 
end adjust_sensor_value.impl; 
--  
thread algorithm 
features 
in_port: in data port; 
out_port: out data port; 
end algorithm; 
--  
thread implementation algorithm.impl 
end algorithm.impl; 

cruise_control

data_in

throttle_
actuator

brake_
pedal

control_laws

control_
algorithm

Required_Connection => false

adjust

cc_complete.impl

Period => 20 ms
Compute_Execution_Time => 2 ms..5ms

out_port

Period => 20 ms
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Contained property associations are required when a property value involves a reference 
to another part of a model. For example, the binding property of a thread must refer 
to the processor to which it is bound. However, that reference is represented as a path 
relative to the location at which the property association is specified. Thus, the 
property association must be declared as contained property association attached to a 
model component that is the common parent of the component being referenced and the 
component to which the property value belongs.  

An example of a contained property association across a component hierarchy is shown in 
Figure 11-1 for the property Allowed_Processor_Binding. The property 
association is included in the specification for the system component Avionics_sys and 
declares that the thread observe can be bound to the processor linux1.  

guidance: process

Avionics_SW: system Avionics_platform: system

linux1: processor pentium
control: process

compute: threadobserve: thread Avionics_bus: bus

Avionics_sys: system

Allowed_Processor_Binding =>
reference Avionics_platform.linux1

applies to Avionics_SW.guidance.observe

 
Figure 11-1:  Contained Property: Allowed_Processor_Binding  

11.2.3 Inherited Property Associations 

There is an implicit form of a property association that can be declared for contained 
components. This form involves properties defined with the inherit reserved word. 
For these properties, a property association declaration within a component is 
assigned to any subcomponent to which the property applies. For example, a Period 
property association within a process declaration applies to all of the threads contained 
within it, unless an individual thread property association declaration assigns a 
different value to the Period. An example Period property declaration within a 
system type declaration is shown in Table 11-3. A graphical representation is shown in the 
lower portion of that table. See Section 11.5 for more information. 

One should be cautious in using this implicit property assignment for subcomponents. An 
inadvertent omission of a specific assignment for a contained component is not readily 
detectable and may result in an incorrect property value assignment. In the example shown in  
Table 11-3, Period for the thread adjust defaults to an execution time of 20 ms. If 
the intention had been to have a Period of 10 ms, there would have to be an explicit 
declaration for the Period of the adjust subcomponent.  
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11.2.4 Mode or Binding Specific Property Associations 

Property associations can be specialized to specific modes or bindings by declaring this 
specialization in the property association. For example, the computation time and period 
property associations from Table 11-3 are declared for a specific processor binding 
in Table 11-4. Thus, alternative thread execution times and other processor-dependent 
properties can be declared based upon processor bindings through the in 
binding declaration. In Table 11-4, the Required_Connection property 
association is specialized to the initialize mode in the system implementation 
declaration cc_complete.impl. 

Table 11-4: In Binding and In Mode Property Associations 

system cc_complete 
properties 
Period => 20 ms in binding (Intel); 
end cc_complete; 
-- 
system implementation cc_complete.impl 
subcomponents 
brake_pedal: device brake_pedal; 
cruise_control: system cruise_control.impl; 
throttle_actuator: device throttle_actuator; 
Intel: processor Intel.impl; 
connections 
C1: event data port brake_pedal.brake_event -> 
cruise_control.brake_event; 
C2: data port cruise_control.throttle_setting -> 
throttle_actuator.throttle_setting; 
modes 
initialize: initial mode; 
nominal: mode; 
properties 
Compute_Execution_Time => 2 ms.. 5ms applies to                      
cruise_control.control_laws.control_algorithm in binding (Intel); 
Compute_Execution_Time => 3 ms.. 7ms applies to                       
cruise_control.control_laws.control_algorithm in binding (AMD); 
Required_Connection => false applies to                              
  cruise_control.control_laws.adjust.out_port in modes (initialize); 
end cc_complete.impl; 
-- 
processor Intel 
end Intel; 
-- 
processor implementation Intel.impl 
end Intel.impl; 
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11.2.5 Property Values 

The values that are assigned to properties can take a variety of forms:  

• individual values associated with a basic built-in type like aadlboolean, 
aadlstring, aadlinteger, or aadlreal 

• a range of values, as shown in Table 11-4 for execution times 

• values with or without units (e.g., Period)  

• an enumeration value set (e.g., the Required_Access property)  

• values that include model elements as well as explicit component classifiers  

• individual values or lists of values  

The property type reference allows a property value to refer to a model element 
according to the containment hierarchy. For example, in Figure 11-1 the 
Allowed_Processor_Binding declaration references a specific processor in the 
system hierarchy. The properties of type classifier allow component classifiers 
to be used as property values. In Table 11-5, the first property association for the 
property Allowed_Processor_Binding_Class restricts the binding to 
processors of type PowerPC. The classifier value can be a component 
implementation or a list of classifier references, as shown in the second 
property association for the property Allowed_Processor_Binding_Class in 
the lower part of Table 11-5. 

Table 11-5:  Classifier Property Types 

Allowed_Processor_Binding_Class => processor PowerPC; 
-- 
processor PowerPC 
end PowerPC; 
-- 
Allowed_Processor_Binding_Class => (processor PowerPC.G4, processor  
PowerPC.G5); 
-- where PowerPC.G4 and PowerPC.G5 are processor implementations of  
-- of the processor type PowerPC 

 
Property value assignments can be indirect and used to centralize the declarations of system 
parameters. For example, the property associations in Table 11-6 use the keyword value 
to assign values to the Deadline and Period properties of the thread 
algorithm.impl. In the property set timing, the property HiRate is defined 
as a constant of the type Time with a value of 5 ms. Period is assigned the value of 
HiRate, and the Deadline is assigned the value of Period. Thus, a change in all of 
these assignments can be accomplished simply by changing the value of HiRate. 
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Table 11-6: Property Associations with Value 
 
thread implementation algorithm.impl 
properties 
Deadline => value (Period); 
Period => value (timing::HiRate); 
end algorithm.impl; 
-- 
property set timing is 
HiRate: constant Time => 5 ms; 
end timing; 
 

 
Built-in property types are summarized on page 122 in the Appendix. Details on declaring 
additional property types are discussed in Section 11.4. 

11.3 Defining New Properties 
A property set is a named collection of property type, property name, and property constant 
declarations. A named property set can be used to augment a general specification or 
defined as part of an AADL annex.  

Table 11-7 shows the form and content of a sample property set declaration 
set_of_faults and includes examples of property name, property type, and property 
constant declarations. The property named comm_error_status is defined as a 
property of type aadlboolean (true or false) that applies to system and 
device components. A property type Speed_Range is defined as a range of real 
values from 0.0 mph..150.0 mph. The constant Maximum_Faults is defined as 
the integer value 3.  

For more details on  

• property type declaration: see Section 11.4  

• property name declaration: see Section 11.5 

• property constant declaration: see Section 11.6  
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Table 11-7: Sample Property Set Declarations 

system implementation data_processing.accelerometer_data  
properties 
      set_of_faults::comm_error_status => true; 
end data_processing.accelerometer_data; 
 
property set set_of_faults is 
 
-- An example property name declaration  
comm_error_status: aadlboolean applies to (system, device);  
-- An example property type declaration  
Speed_Range : type range of aadlreal 0.0 mph..150.0 mph units (mph); 
-- An example property constant declaration 
Maximum_Faults : constant aadlinteger => 3; 
 
end set_of_faults; 

11.4 Property Type Declarations 
A property type declaration defines a property type by associating an identifier with it and 
establishing the set of legal values for a property of that type. The declaration consists of  

1. the desired identifier for the property type 

2. a colon (:) 

3. the reserved word type 

4. an explicit type definition 

5. a terminating semicolon (;)  

The pattern for a property type declaration is shown in the box below: 

identifier: type  property type definition; 

 
A property type definition may be an AADL built-in property type, a specialized type 
explicitly defined within the declaration, or a reference to previously defined property type.  

In the examples shown in Table 11-8, the property type bit_error is defined as an 
aadlboolean property type. The predefined aadlboolean property type has two legal 
values, true and false. The property types fault_category and 
fault_condition are defined as enumeration types. An enumeration property 
type defines a specific set of identifiers as its legal values.  

Type declarations can be more complex than simple base types. For example, the type 
number_of_components is declared in the property set more_types as an 
aadlinteger that ranges over the value 0 .. 25. The property boat_length is 
declared as a type of aadlreal with the units of feet that ranges over the values of 7.5 
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.. 150.0 units ( feet ). The property voltage_ranges is a type of 
aadlreal that is a range of values that can span 0.0 .. 5.3 units (volts).  

Table 11-8: Sample Property Type Declarations 

property set set_of_faults is 
bit_error: type aadlboolean; 
fault_category: type enumeration (benign, tolerated, catastrophic); 
fault_condition: type enumeration (okay, error, failed); 
time_delay: type aadlreal units (seconds) ;  
end set_of_faults; 
 
property set more_types is  
number_of_components: type aadlinteger 0 .. 25; 
boat_length : type aadlreal 7.5 .. 150.0 units ( feet );  
voltage_ranges : type range of aadlreal 0.0 .. 5.3 units (volts); 
end more_types; 

 

11.5 Property Name Declarations 
A property name declaration defines a property by declaring a name, identifying a type for 
the property, and applying the property to a category of element within the specification (i.e., 
component, mode, port group, flow, port, server subprogram, or connection). A property 
name declaration consists of  

1. desired identifier for the property name 

2. colon (:) 

3. neither, either, or both of the reserved words (access or inherit) 

4. explicit type identifier 

5. reserved words (applies to) 

6. property owner category or the reserved word (all) 

7. terminating semicolon (;) 

The pattern for a property name declaration is shown in the box below: 

name : [access inherit property type applies to (property owner category); 

 
A property owner category can be a component (e.g., system, thread, device), mode, port 
group, flow, port (event or data), server subprogram, parameter, or connections (port group, 
event port, data port, access, or parameter). 

Example property name declarations within a property set set_of_names are shown 
in Table 11-9. Property name declarations can include the access and inherit options. A 
property declared with the reserved word inherit indicates that a value is inherited 
from a containing component, if a property value cannot be determined for a component. 
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This inheritance can be seen in the declaration for the property critical_unit that is 
declared as inherit and as type aadlboolean and applies to all component categories. 
A property declared with the reserved word access is associated with access to a 
subcomponent rather than to the data component itself. The property queue_access is 
declared as a true-false access property for a data component. This can be used to 
restrict required access to a data queue.  The property 
required_sensor_array_size  is declared as type array that is declared within the 
property set set_of_types that is shown in the lower portion of Table 11-9. 
Similarly, the property dangerous_voltages is declared with a type 
voltage_ranges that is declared in the property set more_types found in Table 
11-8. 

Table 11-9:  Sample Property Name Declarations 

property set set_of_names is 
critical_unit: inherit aadlboolean applies to (all); 
queue_access: access aadlboolean applies to (data); 
required_sensor_array_size: inherit set_of_types::array applies to 
(system, process, thread); 
dangerous_voltages: more_types::voltage_ranges => 5.1 .. 5.3 volts  
applies to (processor); 
end set_of_names; 
 
property set set_of_types is 
array: type enumeration (single, double, triplex); 
end set_of_types; 

11.6 Property Constant Declarations 
Property constants are property values that are known by a symbolic name. Property 
constants are provided in the predeclared property sets and can be defined in named property 
sets. They can be referenced in property expressions by name wherever the value itself is 
permissible.  

Here are the basic declaration forms for a property constant declaration:  

identifier: constant (type) => property value 

identifier: constant list of (type) => property values 

 
In the forms shown above  

• Identifier is the name that can be used as a value in property associations.  

• Entry (type) is a built-in type or a type declared in a property set.  

• Property value or values must be of the type included in the constant declaration.  
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Some sample declarations are shown in Table 11-10, where, for the property set 
limits_set, 

• Max_Threads is defined as an integer value of 256. 

• Minimum_value is defined as a real value of 5.0. 

• Default_Fault_State is defined as a constant of the type fault_condition 
with the value of okay.  

The type fault_condition, mentioned in Table 11-10, is defined in the package 
set_of_faults, as shown in Table 11-8.  

Table 11-10: Sample Property Constant Declarations 

property set limits_set is 
Max_Threads : constant aadlinteger => 256 ; 
Minimum_value: constant aadlreal => 5.0; 
Default_Fault_State: constant set_of_faults::fault_condition => 
okay; 
end limits_set 
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12 Organizing a Specification 

This section presents language constructs that can be used to organize an AADL specification 
by grouping like elements using packages or design patterns. 

12.1 Packages  
A package is a named grouping of declarations and property associations that can be 
used to organize a specification. Packages establish distinct namespaces. However, they do 
not define an architectural hierarchy or design structure and cannot be declared inside other 
packages. 

A package is divided into public and private segments. Declarations in the public 
segment are visible outside the package, whereas declarations in the private segment 
are visible only within the package. To reference an element in the public segment from 
outside a package, preface the element’s identifier with the package name. In Table 12-1 
for example, a process type compress_display_data contained in the public 
segment of the package display_dynamics_set would be referenced from outside 
the package as display_dynamics_set::compress_display_data.  

Also in Table 12-1, the specification for the system display_management references 
the compress_display_data process declared in the package 
display_dynamics_set. The data component new_format declared in the 
private segment of the package cannot be accessed from outside. However, the data 
component display_data can be, since it is declared in the public segment of the 
package. 
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Table 12-1:  Example Package Declaration 

package display_dynamics_set 
-- Elements accessible from outside the package are listed following 
-- the key word public 
public  
process compress_display_data 
features 
display_data_input: in data port display_data; 
formatted_data: out data port; 
data_error: out event port; 
end compress_display_data; 
 
data display_data 
end display_data; 
-- Elements accessible only inside the package are listed following 
-- the key word private 
private  
data new_format 
end new_format; 
end display_dynamics_set; 
 
-- The subcomponent declaration below references a process in       
-- display_dynamics_set 
system implementation display_management.impl 
subcomponents 
compress_data: process display_dynamics_set::compress_display_data; 
…. 
end display_management.impl; 

 
A package name can include multiple identifiers separated by a double colon (::). Thus, a 
package name like “primary_control_system::roll_axis::control_components” is permitted. 
This naming flexibility can be useful for packages that have been developed independently 
and have been assigned the same name. For example, consider two engineering teams 
working on a project, team red and team blue. Each team develops a package with the name 
“sensor_control.” These packages can be renamed “team_red::sensor_control” and 
“team_blue::sensor_control”.24  This would establish separate namespaces for each package 
and allow references to components with the same name within each package. That is, 
“team_red::sensor_control::controller” would reference a different declaration than 
“team_blue::sensor_control::controller.” In addition, this flexibility can be used to associate 
packages logically. For example, two packages “roll_control” and “yaw_control” can be 
associated by renaming them “aircraft::roll_control” and “aircraft::yaw_control.” 

Packages can be used to organize layers of a design. For example, a package can be 
defined for a flight manager subsystem using constituent component subsystems, packages 

                                                 
24  The AADL standard states that “A defining package name must be unique in the global namespace. 

This means that the first identifier in a package name must be unique in the global namespace. 
Succeeding identifiers in the package name must be unique within the scope of the previous 
identifier” [SAE 06a]. 
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that contain generic (common) descriptions, or packages containing only data types (e.g., a 
data dictionary). This concept is shown in the partial specification and packages of Table 
12-2 where the Flight_Manager type declaration and declarations within the package 
avionics_subsystems reference components defined in separate packages.  

In particular, in the portion of Table 12-2 labeled , the Flight_Manager component 
type declaration extends the Flight_Manager system type declared in the 
avionics_subsystems package. In the section labeled , the data type 
avionics_data::raw_data, declared in the package avionics_data  in the 
section labeled , is used in the avionics_subsystem package. And, in table section 

, the GPS subcomponent is an instance of the implementation GPS.impl from the 
avionics_sensor package. The comment lines (-- ……) indicate that other 
declarations required for a complete system specification are not shown. 

Table 12-2: Example Design Organization Using Packages 

system Flight_Manager                                             
extends avionics_subsystems::Flight_Manager 
end Flight_Manager ; 
-- 
system implementation Flight_Manager.common 
    subcomponents 
      NSP : process avionics_subsystems::NavigationSensorProcessing; 
      GPS : device  avionics_sensors::GPS.mil; 
-- ……… 
end Flight_Manager.common; 

package avionics_subsystems                                       
public 
  system Flight_Manager 
  features 
input_data: in data port avionics_data:: raw_data; 
output_data: out data port avionics_data:: processed_data; 
  end Flight_Manager ; 
-- 
process NavigationSensorProcessing 
end NavigationSensorProcessing; 
-- …… 
end avionics_subsystems ; 

package avionics_sensors                                          
public 
  device GPS 
  end  GPS; 
  -- 
  device implementation GPS.mil 
  end GPS.mil; 
--……… 
end avionics_sensors; 
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Table 12-2: Design Organization Using Packages (cont.) 

package avionics_data                                             
public 
-- 
data raw_data 
end raw_data; 
-- 
data processed_data 
end processed_data; 
--  

end avionics_data; 

12.2 Design Patterns 
A collection of specifications can be defined that form a set of extensible design patterns. 
Using AADL extension and refinement capabilities, these patterns can be used to develop 
specific application models.   

12.2.1 Type Extensions 

Elements of a design pattern set can involve core type declarations whose features are 
only partially defined. These core types as well as their descendents can be repeatedly 
extended, defining more specific types through feature refinements (refined to), as 
shown in Table 12-3. In that example, the core type one_dimensional_control is 
extended to form two specific types: (1) roll_control and (2) pitch_control. In 
these extensions, the partially defined in port and out port are refined to include 
specific data types. For the type declaration for roll_control, another input data port 
is added.  

In general, new features can be added; partially defined features, completed; and 
property associations, added or modified. In the example in Table 12-3, the 
Required_Connection property value is changed in the roll_control extension.25 
In the pitch_control extension, the Source_Name property association is added. 
The refinement options for type extension declarations are summarized on page 124 in the 
Appendix. 

 

 

 

 

                                                 
25  The default value for the predeclared property Required_Connection is true. However, it is 

declared explicitly as true in this example to demonstrate the refinement of property associations. 
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Table 12-3: Example Type Extension 

process one_dimensional_control 
features 
commanded_value: in data port; 
actuator_command: out data port {Required_Connection => true;}; 
end one_dimensional_control; 
 
process roll_control extends one_dimensional_control 
features 
commanded_value: refined to in data port  roll_cmd_data; 
actuator_command: refined to out data port aileron_cmd_data          
                                    {Required_Connection => 
false;}; 
cross_coupling_state: in data port coupling_data; 
end roll_control; 
process pitch_control extends one_dimensional_control 
features 
commanded_value: refined to in data port pitch_cmd_data  
                          {Source_Name => "commanded_pitch_file";}; 
actuator_command: refined to out data port elevator_cmd_data; 
end pitch_control; 

12.2.2 Refinements within Implementations 

In an implementation declaration, the refines type subclause can be used to add or 
modify feature property associations of an implementation’s type. For example, consider 
the server subprogram features for the thread type reader shown graphically 
and as AADL text in Table 12-4. There are two thread implementations, one for 
reading temperature (reader.temp) and one for reading pressure (reader.pressure). 
Each modifies the computation execution time value and adds a property association that 
defines a value for the subprogram’s compute deadline. Note that including the name of the 
feature being refined (in this example a subprogram) in the refined to statement is 
optional. In the example, the subprogram read_data is included within the refined 
to declaration for the thread implementation reader.temp but is not included in 
the refined to declaration for the thread implementation 
reader.pressure. 
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Table 12-4: Example Refines Type Implementation Subclauses 

thread reader 
features 
read_it: server subprogram read_data {Compute_Execution_Time => 2 
ms ..5 ms;}; 
end reader; 
 
thread implementation reader.temp 
refines type  
read_it: refined to server subprogram read_data 
{Compute_Execution_Time => 2 ms .. 4 ms; Compute_Deadline => 5 ms; 
}; 
end reader.temp; 
 
thread implementation reader.pressure 
refines type  
read_it: refined to server subprogram {Compute_Execution_Time => 2 
ms .. 4 ms; 
         Compute_Deadline => 5 ms; }; 
end reader.pressure; 

reader.temp

read_it

reader.pressure

read_it

reader
read_it

implements implements

 

12.2.3 Implementation Extensions 

Implementations can extend other implementations, modifying the underlying 
implementations and adding characteristics to them. Individual implementations can be 
extended multiple times, and extensions themselves can be extended. Implementation 
extensions can be integrated with type extension declarations to create an interrelated set of 
component types and implementations.  

Table 12-5 shows example implementation extension declarations with accompanying 
type extension declarations for a flight control system. The type extension for 
flight_control_system adds an additional in data port 
sensor_set_redundant. Relationships among the declarations are shown graphically 
following the textual AADL specification. The refinement options for implementation 
extension declarations are summarized on page 125 in the Appendix. 



Section 12: Organizing a Specification 
 

114  CMU/SEI-2006-TN-011 

 

Table 12-5: Example Implementation Extensions 

system flight_control_system 
features 
sensor_set: in data port; 
end flight_control_system; 
 
system flight_control_system_redundant extends  
              flight_control_system 
features  
sensor_set_redundant: in data port; 
end flight_control_system_redundant; 
 
system implementation flight_control_system.basic 
end flight_control_system.basic; 
 
system implementation flight_control_system.UAV extends  
              flight_control_system.basic 
end flight_control_system.UAV; 
 
system implementation flight_control_system_redundant.R_UAV extends 
flight_control_system.UAV 
end flight_control_system_redundant.R_UAV; 

Flight Control 
System

Flight Control 
System – Redundant

Flight Control 
System.basic

extends

extends extendsFlight Control 
System.UAV

Flight Control 
System.R_UAV

implementsimplements

type

implementation
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12.2.4 Example Design Patterns 

In this section, the extension and refinement capabilities of the AADL are used to define a 
family of N-way Voting Lane components. Each N-way component constitutes a lane within 
a redundant composite of N-lanes and receives output data and system status opinions from 
the other lanes. Figure 12-1 shows a three-way lane system component. 

output_of_other_01

output_of_other_02

output_data

error_vote

input_data

vote_of_others

three-way

 

Figure 12-1:  Three-way Voting Lane Component 

The family of N-way Lane components depicted in Figure 12-2 is built upon extensions and 
refinements of generic type-implementation pairs. The core pair is a two-way voting 
generic type two-way and a generic implementation of that type two-way.g. The generic 
two-way voting type and implementation are extended to create a three-way voting 
generic type-implementation pair; the generic three-way voting type and 
implementation are extended to create a four-way voting generic type-
implementation pair.  

extends

type

implementation

two-way

extends

three-way four-way

two-way.g three-way.g four-way.g

implements implements implements

Generic type-
implementation pair.

 

Figure 12-2:  Generic N-way Voting Lanes Type-Implementation Pairs 

Generic type-implementation pairs can be extensions along a well-defined aspect of 
the design. In this example of N-way lane components, the aspect is the number of redundant 
lanes (voting ways) for the system. Generic implementations consist of general subclause 
declarations that can readily be refined in subsequent implementation extensions. In 
cascading generic implementations, partially defined subcomponents, calls, 
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connections, flows, and modes are added. As appropriate, property associations 
are modified and added.  

In cascading generic type declarations, features are partially defined, and basic 
property associations are declared. Generic type declarations consist of the following 
elements: 

• partially defined features that can be completed in the refinements of a specialized 
extends type declarations 

• basic flow declarations that can be used throughout the family with modifications only to 
the flow declaration property associations 

• general property associations that characterize a component  

In creating the family of type-implementation pairs illustrated in Figure 12-2, for 
instance, the two-way generic type is extended to create a three-way type by adding 
features that are partially defined rather than complete (e.g., data ports without data 
classifiers to handle the additional inputs from other lanes). The three-way generic 
implementation results from the extension of the two-way generic implementation. 
In this implementation extension, subcomponents, connections, modes, and 
other elements are added. Generic declarations should be sufficiently general to allow 
refinement by subsequent “voting” implementation extensions. The extension and 
refinement capabilities for types and implementations are summarized on pages 124–125 in 
the Appendix. 

A specific realization of an aspect (e.g., a three-way system) is defined by an extension of the 
associated type-implementation pair, as shown in Figure 12-3. In the specific type 
extensions (extends), features are completed, features and flows are added, and 
relevant property associations are modified or added.  

These declarations result in specialized realizations of the generic type. The specific 
implementation extensions (such as the three-way implementation generated from 
the three-way.g implementation in Figure 12-3) refine the general pattern of their 
associated generic implementations, providing all of the details required for instantiation. In 
the extension subcomponents definitions are completed; and calls, connections, 
flows, and modes are added.  

three-way_refthree-way

three-way.g

implements

three-way_ref.impl

Example extension of a generic type-
implementation pair to create a 

specialized implementation.

 
Figure 12-3:  Specialized Extension and Refinement
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Appendix   

Component-Subcomponent Relationships 
Table 13-1 summarizes the permitted component–subcomponent relationships for each of the 
component abstractions in the AADL. 

Table 13-1: Allowed Component-Subcomponent Relationships 

Category 
Group 

Component 
Category 

Permitted 
Subcomponents 

Permitted 
Subcomponent of 

process 
thread 
data 
thread group 

system 

thread data process 
thread group 

data data 

process 
thread 
data 
thread group 
system 

thread group 
data 
thread 
thread group 

process  
thread group 

Software 

subprogram None allowed None 
processor memory system 

memory memory 
processor 
memory 
system 

bus None allowed system 

Execution 
Platform 

device None allowed system 

Composite system 

process 
data 
processor 
memory 
bus 
device 
system 

system 
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Allowed Features 
Table 13-2 and Table 13-3 summarize the allowed features for each of the component 
abstractions in the AADL. 

Table 13-2: Allowed Features for Components 

Category 
Group 

Component 
Category Allowed Features 

process 

• server subprogram 
• port/port group 
• provides data access 
• requires data access  

thread 

• server subprogram 
• port/port group 
• provides data access 
• requires data access 

data • subprogram 
• provides data access 

thread group 

• server subprogram 
• port/port group 
• provides data access 
• requires data access 

Software 

subprogram 

• out event port 
• out event data port 
• port group (event only) 
• requires data access 
• parameter 

processor 
• server subprogram 
• port/port group 
• requires bus access  

memory requires bus access 

bus requires bus access 

Execution 
Platform 

device 
port/port group 
• server subprogram 
• requires bus access 

Composite system 

• server subprogram 
• port/port group 
• provides data access 
• provides bus access 
• requires data access 
• requires bus access 
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Table 13-3: Features and Allowed Components 

Feature Allowed Feature of Component 
or Component Category 

all port types 

• system 
• process 
• thread 
• thread group 
• processor 
• device 

port 
port group 

• event port 
• event data port 
• port group (events only) 

subprogram (component) 

server 

• system 
• process 
• thread 
• thread group 
• processor 
• device 

subprogram 

subprogram (data) data 

provides data 

• system 
• process 
• thread 
• thread group 
• data 

requires data 

• system 
• process 
• thread 
• thread group 
• subprogram (component) 

provides bus system 

access 

requires bus • system 
• processor 
• memory 
• bus 
• device 

parameter  subprogram (component) 
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Constraints Summary 
Table 13-4 contains a summary of the legality rules for AADL components from Version 1.0 
of the standard. 

Table 13-4: Constraints/Restrictions for Components 

Component 
Category Type Implementation 

data 

Features:  
• subprogram 
• provides data access 
Flow specifications: no 
Properties yes 

Subcomponents: 
• data 
Subprogram calls: no 
Connections: access 
Flows: no 
Modes: yes 
Properties yes 

subprogram 

Features:  
• out event port 
• out event data port 
• port group 
• requires data access 
• parameter 
Flow specifications: yes 
Properties yes 

Subcomponents: 
• none 
Subprogram calls: yes 
Connections: yes 
Flows: yes 
Modes: yes 
Properties yes 

thread 

Features:  
• server subprogram 
• port 
• provides data access 
• requires data access 
Flow specifications: yes 
Properties yes 

Subcomponents: 
• data 
Subprogram calls: yes 
Connections: yes 
Flows: yes 
Modes: yes 
Properties yes 

thread group 

Features:  
• server subprogram 
• port 
• provides data access 
• requires data access 
Flow specifications: yes 
Properties yes 

Subcomponents: 
• data 
• thread 
• thread group 
Subprogram calls: no 
Connections: yes 
Flows: yes 
Modes: yes 
Properties yes 

process 

Features:  
• server subprogram 
• port 
• provides data access 
• requires data access  
Flow specifications: yes 
Properties yes 

Subcomponents: 
• data 
• thread 
• thread group 
Subprogram calls: no 
Connections: yes 
Flows: yes 
Modes: yes 
Properties yes 
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Table 13-4:  Constraints/Restrictions for Components (cont.) 

Component 
Category Type Implementation 

processor 

Features:  
• server subprogram 
• port/port group 
• requires bus access  
Flow specifications: yes 
Properties yes 

Subcomponents: 
• memory 
Subprogram calls: no 
Connections: no 
Flows: yes 
Modes: yes 
Properties: yes 
 

memory 

Features 
• requires bus access  
Flow specifications: no 
Properties yes 

Subcomponents: 
• memory 
Subprogram calls: no 
Connections: no 
Flows: no 
Modes: yes 
Properties yes 

bus 

Features 
• requires bus access  
Flow specifications: no 
Properties yes 

Subcomponents: 
• none 
Subprogram calls: no 
Connections: no 
Flows: no 
Modes: yes 
Properties yes 

device 

Features 
• port/port group 
• server subprogram 
• requires bus access 
Flow specifications: yes 
Properties yes 

Subcomponents: 
• none 
Subprogram calls: no 
Connections: no 
Flows: yes 
Modes: yes 
Properties yes 

system 

Features:  
• server subprogram 
• port/port group 
• provides data access 
• provides bus access 
• requires data access 
• requires bus access 
Flow specifications: yes 
Properties yes 

Subcomponents: 
• data 
• process 
• processor 
• memory 
• bus 
• device 
• system 
Subprogram calls: no 
Connections: yes 
Flows: yes 
Modes: yes 
Properties yes 
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 Built-in Property Types 
Table 13-5 summarizes the AADL standard built-in property types. 

Table 13-5: AADL Built-in Property Types 

Property Type Definition 

aadlboolean  Two values, true or false 

aadlstring All legal strings of the AADL 

enumeration  An explicitly listed set of enumeration identifiers as 
the set of legal values  

units  An explicitly listed set of measurement unit identifiers 
as the set of legal values 

aadlreal  A real value or a real value and its measurement unit 

aadlinteger  An integer value or an integer value and its 
measurement unit 

range  
Closed intervals of numbers indicating that a 
property of this type has a value that is itself a range 
term and specifies the number type of values in the 
range term 

classifier 
Subset of syntactically legal component classifier 
references whose category matches one of 
component categories in the specified list 

reference  

Subset of syntactically legal references to those 
components, whose category matches one of 
component categories in the specified list, or to 
connections or to server subprogram features; 
indicated by the reserved word reference 
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AADL Reserved Words 

Table 13-6 lists the AADL reserved words.  Reserved words are case insensitive. 

Table 13-6: AADL Reserved Words 

aadlboolean end modes reference 

aadlinteger enumeration none refined 

aadlreal event not refines 

aadlstring extends of requires 

access false or server 

all features out set 

and flow package sink 

annex flows parameter source 

applies group path subcomponents 

binding implementation port subprogram 

bus In private system 

calls inherit process thread 

classifier initial processor to 

connections inverse properties true 

constant Is property type 

data list provides units 

delta memory public value 

device mode range  
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Refinements within Type Extensions 
Table 13-7 summarizes the refinement capabilities within type extension declarations. 

Table 13-7: Type Extensions and Associated Refinements  

Refinements within Type Extensions  

Subclause Refinement Description (refined to) 

data  

event 
data  

• add ports (no refined to) 
• complete partial declaration (add a data type or an 

implementation classifier; change a data type 
classifier to a data implementation classifier) 

• redefine or add port property associations 
ports 

event  • add event ports (no refined to) 
• redefine or add event port property associations 

port group 

• add port groups (no refined to) 
• complete partial declarations (add missing type 

reference; change data type classifier to 
implementation classifier) 

• redefine or add port group property associations 

subprogram 

• add server or data subprogram features (no refined 
to) 

• complete partial declarations (change type classifier 
to an implementation classifier; no changes of 
subprogram type or implementation classifiers) 

• redefine or add subprogram property associations 

parameters 

• add parameters (no refined to) 
• complete partial declaration (no change of 

parameter classifier to type or implementation; 
change a type classifier to implementation) 

• redefine or add parameters property associations  

features 
 

subcomponent 
access 

• add subcomponent access features (no refined to) 
• complete partial declaration (no subcomponent 

classifier to type or implementation; type classifier to 
implementation) 

• redefine or add subcomponent property 
associations 

flows  • add flow specifications (no refined to) 
• redefine or add flow property associations 

properties  • redefine or add component property associations 
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Refinements within Implementation Declarations 
Table 13-8 summarizes the refinements associated within standard implementation 
declarations and implementation declarations that extends another. 

Table 13-8: Implementations Extensions and Associated Refinements 

Refinements within Implementation Extensions  

Subclause Refinement Description 

refines type • redefine or add feature property associations 

subcomponents 

• add subcomponents (no refined to) 
• complete partially referenced component classifier declaration  
• modify in modes with a new set of mode references 
• redefine or add subcomponent property associations 

calls 
 

• add calls or call sequences (no refined to) 
• no modification of call sequences 

connections 
 

• add connections (no refined to) 
• modify “in modes” references 
• redefine or add connection property associations 

flows 

• add flow specifications (no refined to) 
• modify in modes with a new set of mode references or mode 

transition references 
• redefine or add flow implementation property associations 

modes 
• add modes (no refined to) 
• redefine or add mode property associations 

properties • redefine or add component property associations 
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